\(\dfrac{6x12x17}{17x4x20}\) Tính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{6}{13}.\dfrac{5}{7}+\dfrac{6}{13}.\dfrac{2}{7}+\dfrac{7}{13}=\dfrac{6}{13}.\left(\dfrac{5}{7}+\dfrac{2}{7}\right)+\dfrac{7}{13}=\dfrac{6}{13}.1+\dfrac{7}{13}=\dfrac{6}{13}+\dfrac{7}{13}=\dfrac{13}{13}=1\)
#Monster
\(\dfrac{6}{13}\).(\(\dfrac{2}{7}+\dfrac{5}{7}\))+\(\dfrac{7}{13}\)
\(\dfrac{6}{13}\).1+\(\dfrac{7}{13}\)
\(\dfrac{6}{13}\)+\(\dfrac{7}{13}\)
1
1: \(S=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{3^9}\)
\(=\left(\dfrac{1}{3}\right)^0+\left(\dfrac{1}{3}\right)^1+...+\left(\dfrac{1}{3}\right)^9\)
u1=1; q=1/3
\(S_9=\dfrac{u1\cdot\left(1-q^9\right)}{1-q}=\dfrac{1\left(1-\left(\dfrac{1}{3}\right)^9\right)}{1-\dfrac{1}{3}}\)
\(=\dfrac{3}{2}\left(1-\dfrac{1}{3^9}\right)\)
2:
\(S=\left(\dfrac{1}{5}\right)^0+\left(\dfrac{1}{5}\right)^1+...+\left(\dfrac{1}{5}\right)^7\)
\(u1=1;q=\dfrac{1}{5}\)
\(S_7=\dfrac{1\cdot\left(1-q^7\right)}{1-q}=\dfrac{1-\left(\dfrac{1}{5}\right)^7}{1-\dfrac{1}{5}}=\dfrac{5}{4}\left(1-\dfrac{1}{5^7}\right)\)
1, Ta có \(\dfrac{\dfrac{1}{3}}{1}=\dfrac{1}{3};\dfrac{\dfrac{1}{9}}{\dfrac{1}{3}}=\dfrac{1}{3};...\)
-> Là cấp số nhân, q = 1/3
Ta có \(S_9=1.\dfrac{1-\left(\dfrac{1}{3}\right)^9}{1-\left(\dfrac{1}{3}\right)}\approx1,5\)
b, Ta có \(\dfrac{\dfrac{1}{5}}{1}=\dfrac{1}{5};\dfrac{\dfrac{1}{25}}{\dfrac{1}{5}}=\dfrac{1}{5};...\)
-> Là cấp số nhân, q = 1/5
\(S_7=\dfrac{1-\left(\dfrac{1}{5}\right)^7}{1-\dfrac{1}{5}}\approx1,25\)
S = \(\left(1+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)
= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)
= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1010}\right)\)
= \(\dfrac{1}{1011}+\dfrac{1}{1012}+...+\dfrac{1}{2021}\)
a: =25/30+12/30=37/30
b: =24/20-15/20=9/20
c: =36/48=3/4
d: =8/17x1/6=8/102=4/51
= \(\dfrac{11}{15}\). \(\left(\dfrac{4}{11}+\dfrac{5}{11}+\dfrac{2}{11}\right)\)
= \(\dfrac{11}{15}\). 1
=\(\dfrac{11}{15}\)
a: \(=\dfrac{3}{4}+\dfrac{9}{5}\cdot\dfrac{2}{3}-1=\dfrac{3}{4}+\dfrac{6}{5}-1=\dfrac{19}{20}\)
b: \(=\dfrac{6}{7}\left(\dfrac{8}{13}+\dfrac{9}{13}-\dfrac{4}{13}\right)=\dfrac{6}{7}\cdot\dfrac{13}{13}=\dfrac{6}{7}\)
Thực hiện phép tính ( tính hợ lí nếu được)
a, \(\dfrac{3}{4}+\dfrac{9}{5}:\dfrac{3}{2}-1\) b, \(\dfrac{6}{7}.\dfrac{8}{13}+\dfrac{6}{13}.\dfrac{9}{7}-\dfrac{4}{13}.\dfrac{6}{7}\)
= \(\dfrac{3}{4}+\dfrac{6}{5}-1\) = \(\dfrac{6}{7}.\left(\dfrac{8}{13}+\dfrac{9}{13}-\dfrac{4}{13}\right)\)
= \(\dfrac{15}{20}+\dfrac{24}{20}-\dfrac{20}{20}\) = \(\dfrac{6}{7}.\left(\dfrac{17}{13}-\dfrac{4}{13}\right)\)
= \(\dfrac{39}{20}-\dfrac{20}{20}\) = \(\dfrac{6}{7}.1\)
= \(\dfrac{19}{20}\) = \(\dfrac{6}{7}\)
a: =-21/36-3/36=-24/36=-2/3
b: =43/12*1/2+5/24=43/24+5/24=2
c: =8/9+1/9=1
e: =1-1/4+1/4-1/7+...+1/97-1/100
=1-1/100=99/100
\(\dfrac{5}{3}\cdot\dfrac{7}{25}+\dfrac{5}{3}\cdot\dfrac{21}{25}-\dfrac{5}{3}\cdot\dfrac{7}{25}\)
\(=\dfrac{5}{3}\cdot\left(\dfrac{7.}{25}+\dfrac{21}{25}-\dfrac{7}{25}\right)\)
\(=\dfrac{5}{3}\cdot\dfrac{21}{25}=\dfrac{7}{5}\)
b) \(250\%+19\dfrac{3}{11}\cdot\dfrac{7}{26}-6\dfrac{3}{11}\cdot\dfrac{7}{26}\)
\(=\dfrac{5}{2}+\dfrac{212}{11}\cdot\dfrac{7}{26}-\dfrac{69}{11}\cdot\dfrac{7}{26}\)
\(=\dfrac{7}{26}\cdot\left(\dfrac{212}{11}-\dfrac{69}{11}\right)+\dfrac{5}{2}\)
\(=\dfrac{7}{26}\cdot13+\dfrac{5}{2}\)
\(=\dfrac{7}{2}+\dfrac{5}{2}\)
\(=\dfrac{12}{2}=6\)
c: \(\dfrac{12\cdot4\cdot72}{36\cdot2\cdot9}=\dfrac{1}{3}\cdot2\cdot8=\dfrac{16}{3}\)
\(\dfrac{6\times12\times17}{17\times4\times20}\)
\(=\dfrac{2\times4\times9}{4\times2\times2\times5}\) (đã triệt tiêu 17)
\(=\dfrac{9}{10}\) (đã triệt tiêu 2 và 4)