cho xy=5. chứng minh x^2 + y^2>9,999
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2\ge2\sqrt{\left(xy\right)^2}=10>9,999\)
ta cần chứng minh 2xy>2x+2y
2xy-2x-2y>0
xy-2x+xy-2y>0
x(y-2)+y(x-2)>0
do x>2 và y>2 nên điều trên là đúng
=>2xy>2x+2y
=>xy>x+y
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=\frac{1}{2}$
Đề sai rồi kìa:)
Cho x = - 1; y = -1 có: x.y = 1 và x + y = -2.
x.y > x+y mà x+y =-2 <4.
Nhìn lại đề bài nhé!
Vậy hả mình lấy bài trên mạng nên có khi sai. Cảm ơn bạn nhé
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}\ge\frac{2.4}{2xy+x^2+y^2}=\frac{8}{\left(x+y\right)^2}=8\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Ta có : (x-y)^2 >= 0
<=> x^2-2xy+y^2>=0
<=> x^2+y^2 >= 2xy = 2.5 = 10 > 9,999
=> x^2+y^2 >= 9,999