5/4x9 + 5/9x14 + 5/14x19 +...+ 1/2014 x2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



tớ nghĩ là A = B
nếu đúng thì tk hộ tớ với , tớ đang bị âm 998 điểm !

Đặt tổng trên là A
\(5A=\frac{5}{4x9}+\frac{5}{9x14}+\frac{5}{14x19}+...+\frac{5}{44x49}\)
\(5A=\frac{9-4}{4x9}+\frac{14-9}{9x14}+\frac{19-14}{14x19}+...+\frac{49-44}{44x49}\)
\(5A=\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\)
\(5A=\frac{1}{4}-\frac{1}{49}\Rightarrow A=\frac{49-4}{4x5x49}=\frac{45}{4x5x49}=\frac{9}{4x49}\)

\(A=\frac{2}{1.5}+\frac{2}{5.9}+\frac{2}{9.13}+....+\frac{2}{81.85}\)
\(\Rightarrow2A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+....+\frac{4}{81.85}\)
\(\Rightarrow2A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{85}\)
\(\Rightarrow2A=1-\frac{1}{85}\)
\(\Rightarrow A=\frac{84}{85}:2=\frac{42}{85}\)
tính A còn lại tự tính nha
a) A = 2/1x5 + 2/5x9 + 2/9x13 +....+2/81x85
\(\frac{2}{1x5}+\frac{2}{5x9}+\frac{2}{9x13}+...+\frac{2}{81x85}\)
\(A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{81}-\frac{1}{85}\)
\(A=1-\frac{1}{85}\)
\(\Rightarrow A=\frac{84}{85}\)
k nha

\(\frac{5}{4.9}+\frac{5}{9.14}+...+\frac{5}{54.59}=\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{54}-\frac{1}{59}=\frac{1}{4}-\frac{1}{59}=\frac{55}{236}\)

\(=\dfrac{1}{5}\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+...+\dfrac{5}{1999\cdot2004}\right)\)
\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{1999}-\dfrac{1}{2004}\right)\)
\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{2004}\right)=\dfrac{1}{5}\cdot\dfrac{125}{501}=\dfrac{25}{501}\)



Sửa đề:
Sửa đề:
\(\dfrac{5}{4\times9}+\dfrac{5}{9\times14}+\dfrac{5}{14\times19}+...+\dfrac{5}{2024\times2019}\)
\(=\dfrac{9-4}{4\times9}+\dfrac{14-9}{9\times14}+\dfrac{19-14}{14\times19}+...+\dfrac{2024-2019}{2024\times2019}\)\(=\dfrac{9}{4\times9}-\dfrac{4}{4\times9}+\dfrac{14}{9\times14}-\dfrac{9}{9\times14}+...+\dfrac{2024}{2024\times2019}-\dfrac{2019}{2024\times2019}\)
\(=\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{2019}-\dfrac{1}{2024}\)
\(=\dfrac{1}{4}-\dfrac{1}{2024}\)
\(=\dfrac{505}{2024}\)