tìm số nguyên tố a,b để a^2 -10.b =9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)Vì \(p\)là số nguyên tố
\(\Leftrightarrow\)\(p\in\left\{2;3;5;7;...\right\}\)
\(+)\)\(p=2\Leftrightarrow p+2=2+2=4\)( hợp số ) ( loại )
\(+)\)\(p=3\Leftrightarrow\hept{\begin{cases}p+2=3+2=5\\p+3=3+10=13\end{cases}}\)( thỏa mãn )
\(+)\)\(p>3\)mà \(p\)là số nguyên tố nên \(p\)có 2 dạng:
\(+)\)\(p=3k+1\left(k\in N\right)\Leftrightarrow p+2=3k+3⋮3\)( hợp số )
\(+)\)\(p=3k+2\Leftrightarrow p+10=3k+12⋮3\)( hợp số )
Vậy \(p=3\)\(\left(đpcm\right)\)
p = 2 => p + 10 = 12 không là số nguyên tố
p = 3 => p + 10 = 13 , p +14 = 17 là các số nguyên tố
P > 3 xét 3 số nguyên tố: p , p + 10 = p + 1 + 9, p + 14 = p + 2 + 12
p, p + 1, p+2 là 3 số liên tiếp => có 1 trong 3 số chia hết cho 3
nếu p chia hết cho 3 thì p không là số nguyên tố ( vì p > 3)
nếu p + 1 chia hết cho 3 => p + 10 chia hết cho 3 => p +10 không là số nguyên tố
nếu p + 2 chia hết cho 3 => p + 14 chia hết cho 3 => p +14 không là số nguyên tố
=> khi p > 3 thì p, p + 10 , p +14 không thể là 3 số nguyên tố
vậy p = 3 thì p, p + 10 , p +14 là 3 số nguyên tố (3 , 13, 17)
a, Th1: p = 2
\(\Rightarrow\)p + 2 = 2 + 2 = 4 ( hợp số )
Th2: p = 3
\(\Rightarrow\)p + 2 = 3 + 2 = 5 (số nguyên tố)
p + 4 = 3 + 4 = 7 (số nguyên tố)
p>3 có dạng 3k + 1; 3k + 2.
\(\Rightarrow\)p + 2 = 3k + 1 + 2 = 3k + 3 \(⋮\)3
\(\Leftrightarrow\)p + 2 là hợp số
p + 4 = 3k + 2 + 4 = 3k + 6 \(⋮\)3
\(\Leftrightarrow\)p + 4 là hợp số
Vậy p = 3 thì p + 2; p + 4 là số nguyên tố.
b, Th1: p = 2
\(\Rightarrow\)p + 10 = 2 + 10 = 12 (hợp số)
Th2: p = 3
\(\Rightarrow\)p + 10 = 3 + 10 = 13 (số nguyên tố)
p + 14 = 3 + 14 = 17 (số nguyên tố)
p>3 có dạng 3k + 1; 3k + 2
\(\Rightarrow\)p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3
\(\Leftrightarrow\)p + 10 là hợp số
p + 14 = 3k + 1 + 14 = 3k +15 \(⋮\)3
\(\Leftrightarrow\)p + 14 là hợp số
Vậy p = 3 thì p + 10; p + 14 là số nguyên tố.
a)
+> Nếu p là số nguyên tố chẵn => p=2
=> p+2 =4 là hợp số
p+4=6 là hợp số
=> p=2 loại
+> Nếu \(p\ge3\)và p là số nguyên tố
=> p có thể là : p = 3k ; p = 3k+1; p=3k+2 \(\left(k\inℕ^∗\right)\)
+> Với p=3k \(\left(k\inℕ^∗\right)\) thì:
p+2=3k+2 là số nguyên tố
p+4 =3k+4=(3k+3)+1=3(k+1) +1 là số nguyên tố
=> p=3k thỏa mãn
=> p=3
+> Với p=3k+1 \(\left(k\inℕ^∗\right)\) thì:
p+2=3k+1+2 =3k+3 =3(k+1) \(⋮\)3 và >3
\(⋮\)k+1
=> p+2 là hợp số
=> p=3k+1 loại
+> Với p=3k+2 \(\left(k\inℕ^∗\right)\) thì:
p+4=3k+2+4=3k+6=3(k+2) \(⋮\)3 và>3
\(⋮\)k+2
=> p=3k +2 loại
Vậy p=3 thỏa mãn đề bài
b)
+> Nếu p là số nguyên tố chẵn => p=2
=> p+10 =12 là hợp số
p+14=16 là hợp số
=> p=2 loại
+> Nếu \(p\ge3\)và p là số nguyên tố
=> p có thể là : p = 3k ; p = 3k+1; p=3k+2 \(\left(k\inℕ^∗\right)\)
+> Với p=3k \(\left(k\inℕ^∗\right)\)thì:
p+10=3k+10=3k+9+1=3(k+3)+1 là số nguyên tố
p+14 =3k+14=3k+12+2=3(k+4) +2 là số nguyên tố
=> p=3k thỏa mãn
=> p=3
+> Với p=3k+1 \(\left(k\inℕ^∗\right)\)thì:
p+14=3k+1+14 =3k+15 =3(k+5) \(⋮\)3 và >3
\(⋮\) k+5
=> p+14 là hợp số
=> p=3k+1 loại
+> Với p=3k+2 \(\left(k\inℕ^∗\right)\)thì:
p+10=3k+2+10=3k+12=3(k+4) \(⋮\)3 và >3
\(⋮\)k+4
=> p=3k +2 loại
Vậy p=3 thỏa mãn đề bài
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CHÚC BẠN HỌC TỐT
NHỚ TÍCH CHO MÌNH VÀ KB NHÉ
a) +, Nếu p = 2
=> p + 1 = 3 ( là số nguyên tố)
+, Nếu p > 2 ( p là số nguyên tố)
=> p = 2k + 1 ( k thuộc N* )
=> p + 1 = 2k + 1 + 1 = 2k + 2 chia hết cho 2 ( loại )
Vậy p = 2
b) +, Nếu p = 2
=> p + 2 = 4 chia hết cho 2, chia hết cho 4 ( loại )
+, Nếu p = 3
=> p + 2 = 5 ( là số nguyên tố )
p + 4 = 7 ( là số nguyên tố)
+, Nếu p > 3 ( p là số nguyên tố )
=> p = 3k + 1 hoặc p = 3k + 2 ( k thuộc N*)
TH1: p = 3k + 1
=> p + 2 = 3k + 1 + 3 = 3k + 3 chia hết cho 3 ( loại )
TH2: p = 3k + 2
=> p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 ( loại )
Vậy p = 3
c,
Tương tự
a, Xét P=2 thì P+1=3 => P=2 thỏa mãn
Xét P>2 thì P=2k+1 => P+1=2k+1+1=2k+2 chia hết cho 2 và >2 vì P là SNT > 2=>p=2k+1 ko thỏa mãn
b,Xét P=2 thì P+2=4 => P=2 ko thỏa mãn
Xét P=3 thì P+2=5 và P+4=7 đều là SNT => P=3 thỏa mãn
Xét P>3 thì P=3k+1 hoặc 3k+2
bạn thay vào như phần a
c, làm tương tự 2 TH trên
a) Do 97 là số nguyên tố mà 97.a cũng là số nguyên tố nên a=1
b) 101 là số nguyên tố để 101.b là hợp số thì b>=2
c) Xét p=2 thì p2+974 là hợp số (loại)
Xét p=3 thì p2+974 là số nguyên tố
Xét p=3k+1 và 3k+2 thì p2+974 là hợp số (loại)
Vậy p=3 thì p2+974 là số nguyên tố
nhầm viết sai đề phải là a^2 - 10.b^2 =9