Cho hình bình hành ABCD trong đó AD=2.AB. Từ C kẻ CE\(\perp\)AB. Nối E với trung điểm M của AD. Từ M kẻ MF\(\perp\)CE, MF cắt BC tại N.
a) Tứ giác MNCD là hình gì ?
b) Tam giác EMC là tam giác gì ?
c) Chứng minh góc BAD gấp đôi góc AEM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét hình thang ADCB có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của CB
Xét tứ giác MNCD có
MD//CN
MD=CN
Do đó: MNCD là hình bình hành
mà DM=DC
nên MNCD là hình thoi
a) Ta có :
MN⊥CE (gt)
AB⊥CE (gt)
⇒ MN//AB
Mà AB//CD ( vì ABCD là hbh )
⇒ MN//CD
Xét tg MNCD có :
MN//CD (cmt )
MD//NC ( vì AD//BC )
⇒ tg MNCD là hbh
b) Gọi F là giao đ' của MN và EC
Xét hình thang AECD (vì AE//CD ) có :
MF//AE//CD
Mà M là trung đ' AD (gt):
⇒ F là trung đ' EC
⇒ EF=CF
Xét Δ EMC có :
MF là đg trung tuyến ( EF=CF ) đồng thời là đg cao ( vì MF⊥EC ) của ΔEMC
⇒ ΔEMC là Δ cân tại M
đừng quên tick cho t nhoa ❤
Ta có : MN\(\perp\)EC
AB\(\perp\)EC
=> AB // MN
Vì ABCD là hình bình hành
=> AD = BC
=> AB // CD
=> AB // CD // MN
Xét tứ giác AECD có :
M là trung điểm AD
MF // AE
=> F là trung điểm EC
Xét \(\Delta CEB\)có :
F là trung điểm EC
FN// EB
=> N là trung điểm BC
Ta có : AM = MD = \(\frac{AD}{2}\)
BN = NC = \(\frac{BC}{2}\)
=> MD = NC
Xét tứ giác MNCD có :
MN // DC
MD = NC
=>MNCD là hình bình hành
Vì F là trung điểm EC
=> EF = FC
Xét \(\Delta MEC\)có :
MF \(\perp\)EC
EF = FC
=> \(\Delta MEC\)cân tại M
Giải
a) Ta có CE ⊥⊥ AB, MF ⊥⊥ CE (gt)
Suy ra MF // AB // CD
Nên MNCD là hình bình hành
Lại có MD = 1212AD = AB = CD
Vậy MNCD là hình thoi
b) Từ chứng minh trên ta có: CN = CD = 1212BC; NF // BE
nên EF = FC
ΔΔEMC có MF là đường cao vừa là đường trung tuyến nên là tam giác cân
Vậy ΔΔEMC cân tại M
c) Ta có: góc BAD = góc NMD (đồng vị) (1)
mà góc NMD = góc M1 + góc M2 = 2 lần góc M3 (2)
và góc M3 = góc AEM (so le trong) (3)
Từ (1), (2), (3) suy ra: góc BAD = 2 lần góc AEM
ta có: MN//AB//CD ( MN và AB cùng vuông góc với CE)
và MD//NC (AD//BC)
=> MNCD là hình bình hành (1)
MD=AD/2
MN=AB=AD/2
nên MD=MN (2)
từ (1)(2) => MNCD là hình thoi.
B) do MN//AB//CD(câu a)
và M là trung điểm AD
=> F là trung điểm EC => MF là đường trung tuyến của tam giác MEC
với lại MF là đường cao của tam giác MEC(MF vuông góc với EC)
=> tam giác MEC cân tại M
C) tam giác MEC cân tại M và MF là đường cao của tam giác MEC
=> MF là đường phân giác của tam giác MEC
=> góc EMF=góc FMC
góc AEM=góc EMF(AB//MN)
góc FMC=góc CMD(MNCD là hình thoi nên đường chéo MC là phân giác)
từ 3 điều trên suy ra góc AEM=EMF=FMC=CMD
=> 2AEM=FMC+CMD