Tìm c/s tận cùng của các số :
a) 21994 b)32015 c)32014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng các t/c các số tận cùng là 1 và 6khi tăng bậc số tận cùng vẫn là 6 và 6.
22015=2.22014=2.41007=2.4.41006=8.16503=8.(...6)=(...8)
32014=91007=9.91006=9.81503=9.(...1)=(...9)
=22015 + 32014 =(...8)+(...9)=(...7)
b, 172023≡72023=7.72022=7.491011=7.49.491010=7.49.2401505=(...3)
Ta có: \(2^1=..2\)
\(2^2=..4\)
\(2^3=..8\)
\(2^4=..6\)
\(2^5=..2\)
\(2^6=..4\)
\(...\)
Lần lượt như vậy, ta sẽ có:
\(2^{4k+1}=..2\)
\(2^{4k+2}=..4\)
\(2^{4k+3}=..8\)
\(2^{4k}=..6\)
Ta có: \(2015=4.503+3\)
\(=>2015=4k+3\)
\(=>2^{2015}=..8\)
Ta lại có: \(3^1=..3\)
\(3^2=..9\)
\(3^3=..7\)
\(3^4=..1\)
\(3^5=..3\)
\(3^6=..9\)
\(...\)
Lần lượt như vậy,ta có quy luật:
\(3^{4k+1}=..3\)
\(3^{4k+2}=..9\)
\(3^{4k+3}=..7\)
\(3^{4k}=..1\)
Ta có: \(2014=4.503+2\)
\(=>2014=4k+2\)
\(=>3^{2014}=..9\)
VẬY: \(2^{2015}+3^{2014}=..8+..9=..7\)
=> \(2^{2015}+3^{2014}\) có tận cùng là 7.
------------------------------------------------------------
Ta có: \(17^1=..7\)
\(17^2=..9\)
\(17^3=..3\)
\(17^4=..1\)
\(17^5=..7\)
\(17^6=..9\)
Lần lượt như vậy, ta có quy luật:
\(17^{4k+1}=..7\)
\(17^{4k+2}=..9\)
\(17^{4k+3}=..3\)
\(17^{4k}=..1\)
TA CÓ; \(2023=4.505+3\)
\(=>2023=4k+3\)
\(=>17^{2023}=..3\)
Vậy \(17^{2023}\) có tận cùng là 3.
Bài này làm từng câu thôi :
\(A=1+3^1+3^2+.......+3^{2014}+3^{2015}\)
\(\Rightarrow3A=3+3^2+3^3+......+3^{2015}+3^{2016}\)
\(\Rightarrow3A-A=\left(3+3^2+......+3^{2016}\right)-\left(1+3^1+.....+3^{2015}\right)\)
\(\Rightarrow2A=3^{2016}-1\)
\(\Rightarrow A=\frac{3^{2016}-1}{2}\)
Đặt A = 19a + 5b + 1890 x c
+ Với a lẻ => a = 2k+1. Ta có:
A = 192k+1 + 5b + 1890 x c
A = 192k . 19 + (...5) + (...0)
A = (192)k . 19 + (...5)
A = (...1)k . 19 + (...5)
A = (...1) . 19 + (...5)
A = (...9) + (....5) = (....4)
+ Với a chẵn => a = 2k. Ta có:
A = 192k + 5b + 1890 x c
A = (192)k + (....5) + (...0)
A = (...1)k + (....5)
A = (...1) + (...5) = (....6)
Vậy với a lẻ thì 19a + 5b + 1890 x c có tận cùng là 4, với a chẵn thì có tận cùng là 6
Ủng hộ mk nha ^-^
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
Tính chất: \(n^{4k+1}\) luôn cùng chữ với tận cùng với n
Do đó \(a^5\) cùng số tận cùng với a; \(b^5\) cùng số tận cùng với b, \(c^5\) cùng số tận cùng với c
\(\Rightarrow S\) cùng chữ số tận cùng với \(a+b+c\)
\(\Rightarrow S\) có tận cùng là 1
a, Dễ thấy 31 có chữ số tận cùng là 1, nên theo tính chất 1 thì 31 2 có chữ số tận cùng là 1.
Vậy 31 2 có chữ số tận cùng là 1
b, Ta có: 9 = 4.2 + 1
Suy ra: 582 9 = 582 4 . 2 + 1 = 582 4 . 2 . 582 .
Do 582 có chữ số tận cùng là 2, theo tính chất 4 thì 582 4 . 2 sẽ có chữ số tận cùng là 6 nên 582 9 = 582 4 . 2 . 582 có chữ số tận cùng là 2.
Vậy 582 9 có chữ số tận cùng là 2
c, Ta có : 2018 = 4.504+2.
Suy ra : 2 2018 = 2 4 . 504 + 2 = 2 4 . 504 . 2 2 = 2 4 . 504 . 4
Theo tính chất 4 thì 2 4 . 504 có chữ số tận cùng là 6 nên 2 2018 = 2 4 . 504 . 4 có chữ số tận cùng là 4.
Vậy 2 2018 có chữ số tận cùng là 4
d, Ta có : 1999 = 4.499+3.
Suy ra : 7 1999 = 7 4 . 499 + 3 .
Theo tính chất 7 thì 7 1999 = 7 4 . 499 + 3 sẽ có chữ số tận cùng là 3
Vậy 7 1999 có chữ số tận cùng là 3
a.
\(7^{95}=7^{92}.7^3=7^{4.23}.7^3\)
Ta có \(7^{4k}\) có tận cùng bằng 1 \(\Rightarrow7^{4.23}\) có tận cùng bằng 1
\(7^3\) có tận cùng bằng \(3\)
\(\Rightarrow7^{95}\) có tận cùng bằng 3
b.
\(\left(...4\right)^{2k}\) có tận cùng bằng 6
\(\Rightarrow14^{1424}\) có tận cùng bằng 6
c.
\(\left(...4\right)^{2k+1}\) có tận cùng bằng 4
\(\Rightarrow4^{567}\) có tận cùng bằng 4
a.
7^{95}=7^{92}.7^3=7^{4.23}.7^3795=792.73=74.23.73
Ta có 7^{4k}74k có tận cùng bằng 1 \Rightarrow7^{4.23}⇒74.23 có tận cùng bằng 1
7^373 có tận cùng bằng 33
\Rightarrow7^{95}⇒795 có tận cùng bằng 3
b.
\left(...4\right)^{2k}(...4)2k có tận cùng bằng 6
\Rightarrow14^{1424}⇒141424 có tận cùng bằng 6
c.
\left(...4\right)^{2k+1}(...4)2k+1 có tận cùng bằng 4
\Rightarrow4^{567}⇒4567 có tận cùng bằng 4
Đáp án là:
a) 4.
b) 7.
c) 9.