tính tổng A= 2^0+2^1+ ....+2^2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + 2y + 1 = y2 + 2z + 1 = z2 + 2x + 1 = 0
=> x2 + 2y + 1 + y2 + 2z + 1 + z2 + 2x + 1 = 0
=> (x + 1)2 + (y + 1)2 + (z + 1)2 = 0
=> x = y = z = - 1
=> A = (-1)2017 + (-1)2017 + (-1)2017 = -3
Xét khai triển:
\(\left(1+x\right)^{2017}=C_{2017}^0+xC_{2017}^1+x^2C_{2017}^2+...+x^{2017}C_{2017}^{2017}\)
Lấy tích phân 2 vế:
\(\int\limits^1_0\left(1+x\right)^{2017}=\int\limits^1_0\left(C_{2017}^0+xC_{2017}^1+...+x^{2017}C_{2017}^{2017}\right)\)
\(\Leftrightarrow\dfrac{2^{2018}-1}{2018}=C_{2017}^0+\dfrac{1}{2}C_{2017}^1+...+\dfrac{1}{2018}C_{2017}^{2017}\)
Vậy \(S=\dfrac{2^{2018}-1}{2018}\)
Bài làm :
Ta có :
\(A=1+2+2^2+...+2^{2017}\text{(1)}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2018}\text{(2)}\)
Lấy vế (2) trừ đi vế (1) ; ta có :
\(2A-A=\left(2+2^2+2^3+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+1^{2017}\right)\)
\(\Rightarrow A=2^{2018}-1\)
Vậy A=22018 - 1
A = 1 + 2 + 22 + 23 + ... + 22017
⇔ 2A = 2( 1 + 2 + 22 + 23 + ... + 22017 )
⇔ 2A = 2 + 22 + 23 + ... + 22018
⇔ A = 2A - A
= 2 + 22 + 23 + ... + 22018 - ( 1 + 2 + 22 + 23 + ... + 22017 )
= 2 + 22 + 23 + ... + 22018 - 1 - 2 - 22 - 23 - ... - 22017
= 22018 - 1
\(A=2^{2018}-2^{2017}-2^{2016}-.....-2^1-2^0\)
\(\Rightarrow-A=2^{2018}+2^{2017}+2^{2017}+.....+2^1+2^0\)
\(\Rightarrow-A=2^0+2^1+2^2+......+2^{2017}+2^{2018}\)
\(\Rightarrow2\left(-A\right)=2+2^2+2^3+......+2^{2018}+2^{2019}\)
\(\Rightarrow2\left(-A\right)-\left(-A\right)=-A=2^{2019}-2^0\)
\(\Rightarrow A=-\left(2^{2019}-1\right)=-2^{2019}+1=1-2^{2019}\)
\(-\dfrac{1}{6}A=\left(-\dfrac{1}{6}\right)^1+\left(-\dfrac{1}{6}\right)^2+...+\left(-\dfrac{1}{6}\right)^{2018}\)
\(\Leftrightarrow-\dfrac{7}{6}A=\left(-\dfrac{1}{6}\right)^{2018}-\left(-\dfrac{1}{6}\right)^0=\dfrac{1}{6^{2018}}-1=\dfrac{1-6^{2018}}{6^{2018}}\)
\(\Leftrightarrow A=\dfrac{6^{2018}-1}{6^{2018}}:\dfrac{7}{6}=\dfrac{6^{2018}-1}{7\cdot6^{2017}}\)
Theo mình bạn không nên hỏi những bài thế này vì nó rất easy
\(A=2^{2017}-\left(2^{2016}+2^{2015}+...+2^2+2^1+2^0\right)\)
\(A=2^{2017}-\left(2^0+2^1+2^2+...+2^{2015}+2^{2016}\right)\)
\(B=\left(2^0+2^1+2^2+...+2^{2015}+2^{2016}\right)\)
\(2B=\left(2^1+2^2+2^3+...+2^{2016}+2^{2017}\right)\)
\(B=\left(2^1+2^2+2^3+...+2^{2016}+2^{2017}\right)-\left(2^0+2^2+2^3+...+2^{2016}+2^{2017}\right)\)
\(B=2^{2017}-2^0=2^{2017}-1\)
\(A=2^{2017}-\left(2^{2017}-1\right)=2^{2017}-2^{2017}+1=1\)
\(A=2^0+2^1+2^2+...+2^{2017}\)
\(2A=2.\left(2^0+2^1+2^2+...+2^{2017}\right)\)
\(2A=2^1+2^2+2^3+...+2^{2018}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{2018}\right)-\left(2^0+2^1+2^2+...+2^{2017}\right)\)
\(A=2^{2018}-2^0\)
\(A=2^{2018}-1\)
2^2018-1 nha bạn.