K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Ta có \(\frac{2^{2007}+1}{2^{2004}+1}=\frac{2^3\left(2^{2004}+1\right)-7}{2^{2004}+1}=8-\frac{7}{2^{2004}+1}\)

\(\frac{2^{2009}+1}{2^{2006}+1}=\frac{2^3\left(2^{2006}+1\right)-7}{2^{2006}+1}=8-\frac{7}{2^{2006}+1}\)

Ta thấy \(2^{2004}+1< 2^{2006}+1\Rightarrow\frac{7}{2^{2004}+1}>\frac{7}{2^{2006}+1}\)

\(\Rightarrow8-\frac{7}{2^{2004}+1}< 8-\frac{7}{2^{2006}+1}\Rightarrow\frac{2^{2007}+1}{2^{2004}+1}< \frac{2^{2009}+1}{2^{2006}+1}\)

15 tháng 3 2017

Bài 1:

Ta có: 200920=(20092)10=403608110 ;  2009200910=2009200910

Vì 403608110< 2009200910 => 200920< 2009200910

15 tháng 3 2017

Bài 1:

Ta có:\(2009^{20}\)=\(2009^{10}\).\(2009^{10}\)

         \(20092009^{10}\)=(\(\left(2009.10001\right)^{10}=2009^{10}.10001^{10}\)

Vì 2009<10001\(\Rightarrow2009^{20}< 20092009^{10}\)

23 tháng 5 2016

mỗi  số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15

23 tháng 5 2016

ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

hay tong tren be hon 15

17 tháng 8 2018

 A=2016/2017+2017/2018

 Do 2016/2017<1,2017/2018<1=> A<2 Hay A<B

17 tháng 8 2018

Câu b tương tự ha

2 tháng 4 2017

Đặt biểu thức là A ta có:

 \(A=\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+...+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+...+\frac{1}{2006}}\)

\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}\right)}{1+\left(1+\frac{2005}{2}\right)+\left(1+\frac{2004}{3}\right)+...+\left(1+\frac{1}{2006}\right)}\)

\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)}{1+\frac{2007}{2}+\frac{2007}{3}+...+\frac{2007}{2006}}\)

\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)}{2007.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}+\frac{1}{2007}\right)}\)

\(\Rightarrow A=\frac{2006}{2007}\)