K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017


A = 3 + 32 + 33 + ... + 32008
3A = 32 + 33 + 34 + ... + 32009
3A - A = ( 32 + 33 + 34 + ... + 32009) - ( 3 + 32 + 33 + ... + 32008)
2A = 32009 - 3
A = \(\frac{3^{2009}-3}{2}\)
\(2A+3=3^x\)
\(\Rightarrow\)\(\frac{3^{2009}-3}{2}\times2+3=3^x\)
\(\Rightarrow3^{2009}-3+3=3^x\)
\(\Rightarrow3^{2009}=3^x\)
\(\Rightarrow x=2009\)

9 tháng 11 2017

Ta có:3A=32+33+.................+32009

\(\Rightarrow\)3A-A=(32+33+...............+32009)-(3+32+33+................+32008)

\(\Rightarrow2A=3^{2009}-3\)

\(\Rightarrow2A+3=3^{2009}\Rightarrowđpcm\)

18 tháng 11 2021

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2021}\\ \Rightarrow3A-A=3^2+3^3+...+3^{2021}-3-3^2-3^3-...-3^{2020}\\ \Rightarrow2A=3^{2021}-3\\ \Rightarrow2A+3=3^{2021}=3^x\\ \Rightarrow x=2021\)

4 tháng 8 2020

Đề câu a có đk?

4 tháng 8 2020

Miyuki Misaki x/3=y/5 đấy ạ, chắc là do bạn í đánh máy sai thôi

`@` `\text {Ans}`

`\downarrow`

`A = 3 + 3^2 + ... + 3^99 + 3^100`

`=> 3A = 3^2 + 3^3 + ... + 3^100 + 3^101`

`=> 3A - A = (3^2 + 3^3 + ... + 3^100 + 3^101) - (3 + 3^2 + ... + 3^99 + 3^100)`

`=> 2A = 3^101 - 3`

`=> 2A + 3 = 3^101 + 3 - 3`

`=> 2A + 3 = 3^101`

Ta có:

`2A + 3 = 3^x`

`=> x = 101.`

A=3+3^2+...+3^100

=>3*A=3^2+3^3+...+3^101

=>2A=3^101-3

=>2A+3=3^101

Theo đề, ta có: 3^x=3^101

=>x=101

21 tháng 5 2021
Ghi rõ đề ra bn ơi
22 tháng 5 2021

\(2A\left(x\right)-B\left(x\right)=2\left(-3x^4+3x^3+7x^2-6x-2\right)-\left(-5x^4+2x^3-x^2+7\right)\)

\(=-6x^4+6x^3+14x^2-12x-4+5x^4-2x^3+x^2-7\)

\(\Rightarrow2A\left(x\right)-B\left(x\right)=-x^4+4x^3+15x^2-12x-11\)

20 tháng 7 2021

A=3+32+33+...+3100

3A=32+33+...+3101

3A-A=(32+33+...+3101)-(3+32+33+...+3100)

2A=3101-3

2A+3=3101

20 tháng 7 2021

\(A=3+3^2+3^3+...+3^{100}\) 

\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\) 

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\) 

\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\) 

Theo đề bài ta có  2A + 3 = 3n ( \(n\in N\) )

\(\Rightarrow2A+3=3^{101}-3+3=3^n\) 

\(\Rightarrow2A+3=3^{101}=3^n\)  

\(\Rightarrow3^{101}=3^n\) 

\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)

Vậy n = 101 

 

26 tháng 5 2018

Đáp án cần chọn là: C

24 tháng 12 2021

C bạn nhé n bằng  101

22 tháng 11 2018

Ta có:  A = 3 + 3 2 + 3 3 + . . . + 3 100

=>  3 A = 3 2 + 3 3 + 3 4 + . . . + 3 101

=>  3 A - A = ( 3 2 + 3 3 + 3 4 + . . . + 3 101 ) - ( 3 + 3 2 + 3 3 + . . . + 3 100 )

=>  2 A = 3 2 + 3 3 + 3 4 + . . . + 3 101 - 3 - 3 2 - 3 3 - . . . - 3 100

2 A = 3 101 - 3 <=>  2 A + 3 = 3 101 , mà  2 A + 3 = 3 n

=> n = 101

13 tháng 8 2021

A=3+32+33+...+399

3A=32+33+...+3100

3A-A=(32+33+...+3100)-(3+32+33+...+399)

2A=3100-3

2A+3=3100

⇒n=100

13 tháng 8 2021

Đây nè bạn, chúc bạn học tốt :))
A = 3 + 3+ 33+ ... + 399
3A = 3. (3 + 3+ 33+ ... + 399)
3A \(=3^2+3^3+3^4+...+3^{100}\)
3A \(=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+...+3^{99}\right)\)
2A\(=3^{100}-3\)
Vậy, sau khi tìm đc 2A, ta tìm stn n nha:
2A + 3 = 3n
\(=3^{100}-3+3=3^n\)
\(3^{100}=3^n\)(Vì -3 +3 = 0)
Vậy n = 100

22 tháng 6 2017

a, A =   3 + 3 2 + 3 3 + . . . + 3 12 => 3A =  3 2 + 3 3 + . . . + 3 13

=> 3A - A = ( 3 2 + 3 3 + . . . + 3 13 ) - ( 3 + 3 2 + 3 3 + . . . + 3 12 )

=> 2A =  3 13 - 3 => A =  3 13 - 3 2

Vì A =  3 x - 3 2 => x = 13 => x+2016 = 2029

b, Số tập hợp con của tập A có x phần tử là  2 x

=>  2 x = 64 =  2 6 => x = 6. Vậy tập A có 6 phần tử

27 tháng 9 2021

Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12

Mà đoạn 2A sai nhé bạn, sửa lại:

2A = 3101−13101−1 2A=-10001

A=-10001/2

A=-5000,5

Vậy A=-5000,5