cho a/b=c/d, chứng minh rằng (a-b/c-d) mũ 2
giúp mình với.
ai làm nhanh mình tick cho nhé.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức tỉ lệ phân số ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{ac}{bd}\)
Có: A+B = a + b - 5 - b - c + 1 = a - c - 4
C - D = b - c - 4 - b + a = a - c - 4
=> A + B = C - C ( = a - c -4)
A + B = a + b - 5 + ( - b - c + 1)= a + b - 5 - b - c + 1 = a - c - 4 (1)
C - D = b - c - 4 - (b - a) = b - c - 4 - b + a = - c - 4 + a = a - c - 4 (2)
(1) và (2) => A + B = C - D
Trong 4 số a,b,c,d sẽ có ít nhất 2 số có cùng số dư khi chia cho 3 nên tích đó sẽ chia hết cho 3.
Trong 4 số a,b,c,d
Nếu có 2 số có cùng số dư khi chia cho 4 thì tích đó chia hết cho 4
Nếu không có cùng số dư thì số dư của 4 số đó chia cho 4 lần lược sẽ là 0,1,2,3. Vậy trong 4 số này có 2 số chẵn, 2 số lẻ. Mà hiệu 2 số chẵn và lẻ đều là số chẵn nên tích đó phải có ít nhât 2 số chẵn hay tích đó chia hết cho 4
Vì 3 và 4 nguyên tố cùng nhau nên tích đã cho chia hết cho 12
Ta có : \((\frac{a-b}{c-d})^4=\frac{a^4+b^4}{c^4+d^4}\)
Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có :
\(+>\)Xét \((\frac{a-b}{c-d})^4=(\frac{bk-b}{dk-d})^4=(\frac{(k-1)b}{(k-1)d})^4=\frac{b^4}{d^4}\)
Tương tự như \(\frac{a^4+b^4}{c^4+d^4}\)
Chúc bạn học tốt
\(a^2+c^2=b^2+d^2\)
\(\Leftrightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)⋮2\)
Ta có
\(a^2+b^2+c^2+d^2+\left(a+b+c+d\right)=\)
\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)
Ta thấy
\(a\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của 2 số TN liên tiếp nên chúng chia hết cho 2
\(\Rightarrow a^2+b^2+c^2+d^2+\left(a+b+c+d\right)⋮2\)
Mà \(a^2+b^2+c^2+d^2⋮2\left(cmt\right)\)
\(\Rightarrow a+b+c+d⋮2\)
Mà a+b+c+d là các số TN khác 0 => a+b+c+d>2
=> a+b+c+d là hợp số
A = [(a +b) + (c + d)].[(a + b) + (c + d)]
A = (a + b).(a + b) + (a +b).(c + d) + (c + d).(a + b) + (c+d).(c+d)
A = a2 + ab + ab + b2 + 2.(a+b).(c+d) + c2 + cd + cd + d2
A = a2 + b2 + c2 + d2 + 2ab + 2.(a +b).(c + d) + 2cd
A = a2 + b2 + a2 + b2 + 2. [ab + (a + b).(c + d) + cd]
A = 2.(a2 + b2) + 2.[ab + (a + b)(c + d) + cd]
⇒ A ⋮ 2 ⇒ a + b + c + d ⋮ 2 mà a; b;c;d là số tự nhiên nên a + b + c + d > 2
Hay A ⋮ 1; 2; A vậy A là hợp số (đpcm)
giờ mình giải cho bạn luôn đc ko, bạn có cần nữa ko để mình biết mình giải cho