\(0\le x\le1\) Cm
\(-x^3+x^2\le\frac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x\sqrt{y}-y\sqrt{x}=\sqrt{x}\cdot\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\le\sqrt{x}\left(\frac{\sqrt{y}+\sqrt{x}-\sqrt{y}}{2}\right)^2\le\frac{x}{4}\le\frac{1}{4}\)(BĐT AM-GM)
Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x=1\\\sqrt{y}=\sqrt{x}-\sqrt{y}\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{4}\end{cases}}}\)
Ta có: \(\sqrt[3]{x^2\left(2-2x\right)}\le\frac{x+x+2-2x}{3}=\frac{2}{3}.\)
\(\Rightarrow x^2\left(2-2x\right)\le\frac{8}{27}\Leftrightarrow-x^3+x^2\le\frac{4}{27}\)
Dấu "=" xảy ra khi: \(x=2-2x\Leftrightarrow x=\frac{2}{3}\)
Bạn xem lại đề nha
Ta có:
\(0\le x\le y\le z\le1\Leftrightarrow\left(1-x\right)\left(1-y\right)\ge0\)
\(\Rightarrow1-y-x+xy\ge0\Leftrightarrow1+xy\ge x+y\)(1)
Tiếp tục chứng minh:
\(\hept{\begin{cases}0\le x\le y\Leftrightarrow xy\ge0\\1\ge z\end{cases}}\) (2)
Cộng theo vế của (1) và (2) ta có:\(2\left(xy+1\right)\ge x+y+z\)
trở lại bài toán: \(\frac{z}{xy+1}=\frac{2z}{2\left(xy+1\right)}\le\frac{2z}{x+y+z}\)
CHứng minh tương tự: \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{2x}{x+y+z}\\\frac{y}{xz+1}\le\frac{2y}{x+y+z}\end{cases}}\)
Cộng theo vế ta có đpcm
Vì \(0\le x\le y\le z\le1\Rightarrow x-1\le0;y-1\le0\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\)
\(\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\left(1\right)\)
Chứng minh tương tự ta được \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{x}{y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{y}{z+x}\left(3\right)\end{cases}}\)
Cộng từng vế của (1)(2)(3) ta có:
\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\left(4\right)\)
Mà \(\frac{x}{y+z}\le\frac{x+x}{x+y+z}\Rightarrow\frac{x}{y+z}\le\frac{2x}{x+y+z}\)
Chứng minh tương tự được \(\hept{\begin{cases}\frac{y}{x+z}\le\frac{2y}{x+y+z}\\\frac{z}{x+y}\le\frac{2z}{x+y+z}\end{cases}}\)
\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\le\frac{2\left(x+y+z\right)}{x+y+z}=2\left(5\right)\)
(4)(5) => đpcm
Với \(0\le x;y\le1\) ta có:
\(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\ge\frac{x}{\sqrt{1+3}}+\frac{y}{\sqrt{1+3}}=\frac{x+y}{2}\)
Dấu "=" xảy ra <=> x = y = 1
Có: \(0\le x;y\le1\)
=> \(0\le x^2\le x\le1;0\le y^2\le y\le1\)
\(\left(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\right)^2\le2\left(\frac{x^2}{y+3}+\frac{y^2}{x+3}\right)\le2\left(\frac{x}{x+y+2}+\frac{y}{x+y+2}\right)\)
\(=2\left(\frac{x+y+2}{x+y+2}-\frac{2}{x+y+2}\right)\le2\left(1-\frac{2}{1+1+2}\right)=1\)
=> \(\sqrt{\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}}\le1\)
Dấu "=" xảy ra x<=> = y =1