Chứng minh rằng tích \(\left(a+1\right)\times\left(3\times a+2\right)\)) luôn chia hết cho 2 với mọi a thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
a) Với mọi n là số lẻ hoặc số chẵn thì \(A=\left(n+6\right)\left(n+7\right)\) luôn luôn là số chẵn . Do đó \(A⋮2\)với mọi \(n\in Z\)
b) \(B=n\left(n+1\right)+3\)
Vì \(n\left(n+1\right)\)là tích của hai số nguyên liên tiếp nên là số chẵn , do đó \(n\left(n+1\right)⋮2\), nhưng 3 không chia hết cho 2
\(\Rightarrow\)B không chia hết cho 2 với mọi \(n\in Z\)
Nếu n là số chẵn thì (n + 6) chia hết cho 2
=> (n + 6)(n + 7) chia hết cho 2
Nếu n là số lẻ thì (n + 7) chia hết cho 2
=> (n + 6)(n + 7) chia hết cho 2
Vậy với mọi n nguye thì (n + 6)(n + 7) đều chia hết cho 2
\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=\left(n+1\right)n\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
vì tích của 3 số tự nhiên liên tiếp chia hết cho 6
Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)
Do 2013 là số lẻ nên \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\left(1+2+3+....+n\right)\)
Hay \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow2\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮n\left(n+1\right)\) (đpcm)
\(n\left(n^2-1\right)\left(n^2+6\right)\\=n\left(n-1\right)\left(n+1\right)\left(n^2-4+10\right) \\ =n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)\)
Vì n-2, n-1, n, n+1, n+2 là 5 số nguyên liến tiếp nên có ít nhất 1 số chia hết cho 2, 1 số chia hết 3, 1 số chia hết 5
Mà (2,3,5)=1\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2.3.5=30\)
Vì n-1, n, n+1 là 3 số nguyên liến tiếp nên có ít nhất 1 số chia hết 3
\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow10n\left(n-1\right)\left(n+1\right)⋮3.10=30\)
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)⋮30\)
Vậy ...