Giúp mk câu a^2+c^2=b^2+d^2 cmr a+b+c+d là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Sai đề không, nếu a=b=c=d=2 thì a,b,c,d đều là số nguyên tố mà.

Bài 1 :
\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)
\(=a-b+c-d-a+c\)
\(=-\left(b+d\right)=VP\)
\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)
\(=a-b-c+d+b+c\)
\(=a+d=VP\)
\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)

Ta có
\(a^2+b^2+c^2+d^2+a+b+c+d=\)
\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)
Ta thấy
\(a\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của 2 số tự nhiên liên tiếp nên các tích trên đều chia hết cho 2
\(\Rightarrow a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)⋮2\)
\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)⋮2\)
Ta có
\(a^2+c^2=b^2+d^2\Rightarrow\left(a^2+b^2+c^2+d^2\right)=2\left(b^2+d^2\right)⋮2\)
\(\Rightarrow a^2+b^2+c^2+d^2⋮2\)
\(\Rightarrow a+b+c+d⋮2\)
=> a+b+c+d là hợp số

Xét a^2+b^2+c^2+d^2+e^2-(a+b+c+d+e)
\(=\) a^2+b^2+c^2+d^2+e^2 -a-b-c-d-e
\(=\)a(a-1)+b(b-1)+c(c-1)+d(d-1)
Ta có: a, a-1 là 2 số liên tiếp nên tích chúng chi hết cho 2
tương tự b,c,d,e cũng vậy
\(\Rightarrow\) \(\left\{{}\begin{matrix}a\left(a-1\right)⋮2\\b\left(b-1\right)⋮2\\c\left(c-1\right)⋮2\\d\left(d-1\right)⋮2\end{matrix}\right.\Rightarrow\)a(a-1)+b(b-1)+c(c-1)+d(d-1) \(⋮\)2
\(\Rightarrow\)a^2+b^2+c^2+d^2+e^2-(a+b+c+d+e) \(⋮\)2
mà a^2+b^2+c^2+d^2+e^2 \(⋮\)2
\(\Rightarrow\)a+b+c+d+e \(⋮\)2
mà a,b,c,d,e nguyên dương
\(\Rightarrow\)a+b+c+d+e>2
\(\Rightarrow\)a+b+c+d+e là hợp số
Lưu ý: muốn chứng minh là hợp số phải chứng minh nó chia hết cho 1 số(không phải số nguyên tố)
còn nếu nó chia hết cho 1 số nguyên tố thì phải lớn hơn số nguyên tố đó
nên sau khi c/m a+b+c+d+e \(⋮\)2 , chúng ta phải c/m a+b+c+d+e>2. chứ lở nó bằng hai thì ko phải hợp số

Theo hằng đẳng thức
a^2+b^2=(a+b)^2-2ab;
c^2+d^2=(c+d)^2-2cd.
Suy ra a^2+b^2 và a+b cùng chẵn, hoặc cùng lẻ;
c^2+d^2 cùng chẵn hoặc cùng lẻ. Kết hợp với
a^2+b^2=c^2+d^2 ta suy ra a+b và c+d cùng chẵn,
hoặc cùng lẻ. Từ đó a+b+c+d chẵn, và vì
a+b+c+d>=4 nên a+b+c+d là hợp số.
tick cho mk nha

Theo hằng đẳng thức
\(a^2+b^2=\left(a+b\right)^2-2ab;\)
\(c^2+d^2=\left(c+d\right)^2-2cd\)
\(\Rightarrow\)
\(a^2+b^2\)và \(a+b\) cùng chẵn, hoặc cùng lẻ;
\(c^2+d^2\) và \(c+d\)cùng chẵn hoặc cùng lẻ. Kết hợp với
\(a^2+b^2=c^2+d^2\Rightarrow a+b\) và \(c+d\) cùng chẵn hoặc cùng lẻ
Từ đó \(a+b+c+d\)chẵn, và vì \(a+b+c+d\ge4\)
nên \(a+b+c+d\) là hợp số.
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
Bước 1: Phân tích đẳng thức:
Ta có thể biến đổi đẳng thức đã cho như sau:
Bước 2: Tạo hiệu hai bình phương:
Tiếp tục biến đổi, ta được:
Bước 3: Phân tích thành nhân tử:
Đặt A = (a + c) + (b + d) và B = (a + c) - (b + d), ta có:
Bước 4: Chứng minh A hoặc B chia hết cho 2:
Bước 5: Kết luận:
Kết luận cuối cùng:
ĐÂY BẠN NHÉ!