Tìm x để \(x^4+4x+2013\)là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2x^3+2x^2+x+3\)
\(\left(x^2+x+2\right)^2=x^4+5x^3+4x+4>x^4+2x^3+2x^2+x+3>x^4+2x^3+x^2\)
\(=\left(x^2+x\right)^2\)
\(\Rightarrow x^4+2x^3+2x^2+x+3=\left(x^2+x+1\right)^2\)
\(\Leftrightarrow x^4+2x^3+2x^2+x+3=x^4+2x^3+3x^2+2x+1\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy.......
Mode 5 3 trên máy tính Casio fx-570 :
a) a=1,b=-2,c=-4
b) a=1,b=-2,c=7
Vì \(4x^3+14x^2+9x-6\) là số chính phương nên ta có \(4x^3+14x^2+9x-6=k^2\) với \(k\inℕ\)
Ta có \(4x^3+14x^2+9x-6=\left(x+2\right)\left(4x^2+6x-3\right)\)nên ta có \(\left(x+2\right)\left(4x^2+6x-3\right)=k^2\)
Đặt \(\left(x+2;4x^2+6x-3\right)=d\)với \(d\inℕ^∗\)
Ta có \(x+2⋮d\Rightarrow\left(x+2\right)\left(4x-2\right)⋮d\Rightarrow4x^2+6x-4⋮d\)
Ta lại có \(4x^2+6x-3⋮d\Rightarrow\left(4x^2+6x-3\right)-\left(4x^2+6x-4\right)=1⋮d\)
\(\Rightarrow d=1\)(Vì \(d\inℕ^∗\))
Vậy \(\left(x+2;4x^2+6x-3\right)=1\)
mà \(\left(x+2\right)\left(4x^2+6x-3\right)=k^2\)nên ta có:
x + 2 và 4x2 + 6x - 3 là số chính phương\(\Rightarrow\hept{\begin{cases}x+2=a^2\\4x^2+6x-3=b^2\end{cases}}\left(a,b\right)\inℕ^∗\)
Vì x > 0 nên ta có \(4x^2< b^2< 4x^2+12x+9\Leftrightarrow\left(2x\right)^2< b^2< \left(2x+3\right)^2\)
Vì b lẻ nên \(b^2=\left(2x+1\right)^2\Leftrightarrow4x^2+6x-3=4x^2+4x+1\)
\(\Leftrightarrow2x=4\Leftrightarrow x=2\)
Vậy x = 2 thì \(4x^3+14x^2+9x-6\)là số chính phương
Tìm n đề cho đa thức theo biến x là số chính phương. Ai làm cho nổi.
alibaba nguyễn tôi thấy hình như đề sai