chứng minh góc tạo thành bởi 2 tia phân giác của 2 góc ngoài của tam giác bằng 1 nửa góc ngoài thứ 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADC có góc ADB là góc ngoài tại đỉnh D
nên \(\widehat{ADB}=\widehat{DAC}+\widehat{C}\)
Xét ΔADB có góc ADC là góc ngoài tại đỉnh D
nên \(\widehat{ADC}=\widehat{DAB}+\widehat{B}=\widehat{DAC}+\widehat{B}\)
\(\widehat{ADC}-\widehat{ADB}\)
\(=\widehat{DAC}+\widehat{B}-\widehat{DAC}-\widehat{C}\)
\(=\widehat{ABC}-\widehat{ACB}\)
b: Vì AD và AE là hai tia phân giác của hai góc kề bù
nên AD vuông góc AE
=>ΔDAE vuông tại A
ΔDAE vuông tại A
=>\(\widehat{AEB}+\widehat{ADB}=90^0\)
=>\(\widehat{AEB}+\left(\dfrac{1}{2}\widehat{BAC}+\widehat{C}\right)=\dfrac{1}{2}\widehat{BAC}+\dfrac{1}{2}\widehat{ABC}+\dfrac{1}{2}\widehat{ACB}\)
=>\(\widehat{AEB}=\dfrac{1}{2}\widehat{BAC}+\dfrac{1}{2}\widehat{ABC}+\dfrac{1}{2}\widehat{ACB}-\dfrac{1}{2}\widehat{BAC}-\widehat{C}\)
=>\(\widehat{AEB}=\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)
3:
Xét tứ giác ANBC có
E là trung điểm chung của AB và NC
=>ANBC là hbh
=>AN//BC và AN=BC
Xét tứ giác ABCM có
D là trung điểm chung của AC và BM
=>ABCM là hbh
=>AM//BC và AM=BC
=>AN//AM và AN=AM
=>A là trung điểm của MN