K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

Bạn có lời giải chưa

9 tháng 6 2021

minhf nữa

21 tháng 10 2021

a: Xét tứ giác BHCD có 

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

21 tháng 10 2021

a) Xét tứ giác BHCD có:

M là trung điểm BC

M là trung điểm HD(H đối xứng D qua M)

=> BHCD là hbh

b) Gọi E, F lần lượt là giao điểm CH với AB và BH với AC

=> BF và CE là đường cao tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}BF\perp AC\\CE\perp AB\end{matrix}\right.\)

Mà CD//BF,BD//CE(BHCD là hbh)

=> \(\left\{{}\begin{matrix}BD\perp AB\\CD\perp AC\end{matrix}\right.\)

=> Tam giác ABD vuông tại B và tam giác ACD vuông tại C

Đề sai rồi bạn

29 tháng 10 2020

A B C H D I M K

+ Ta có 

M là trung điểm BC (đề bài) 

HM=DM (đề bài) => M là trung điểm HD

=> BHCD là hình bình hành (Tứ giá có 2 đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hbh) 

=> BH//CD mà BH vuông góc AC => CD vuông góc AC 

+ Từ I dựng đt vuông góc với AC cắt AC tại K

Xét tg ADC có

CD vuông góc AC (cmt)

IK vuông góc AC

=> IK//CD (cùng vuông góc với AC)

Ta cũng có I là trung điểm của AD

=> K là trung điểm của AC (trong 1 tg đường thẳng đi qua trung điểm của 1 cạnh // với 1 cạnh của tg thì đi qua trung điểm của cạnh còn lại) => IK là trung trực thuộc cạnh AC của tg ABC (1)

+ Xét tg AHD có

I là trung điểm của AD (đề bài)

M là trung điểm của HD (cmt)

=> IM là đường trung bình của tg AHD => IM//AH mà AH vuông góc với BC => IM vuông góc với BC => IM là đường trung trực thuộc cạnh BC của tg ABC (2)

Từ (1) và (2) => I là giao của 3 đường trung trực của tg ABC

29 tháng 10 2020

A B C H M D I

Ta có: I là trung điểm của AD; M là trung điểm HD 

=> IM là đường trung bình của tam giác AHD 

=> IM //AH  mà AH vuông BC ; M là trung điểm BC 

=> IM là đường trung trực của BC  (1)

Ta có: M là trung điểm BC; M là trung điểm HD

=> HCDB là hình bình hành 

=> DC // BH mà BH vuông AC => DC vuông AC 

=> Tam giác ACD vuông tại C 

=> IC = 1/2 AD=> IC = AI => I thuộc đường trung trực của AC (2)

(1); (2) => I là trung trực của tam giác ABC