Một mảnh đất hình chữ nhật dài 52m, rộng 36m. Người ta muốn chia mảnh đất thành những khoảnh hình vuông bằng nhau để trồng rau. Hỏi với cách chia nào thì cạnh hình vuông là lớn nhất và bằng bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là hình vuông lớn nhất .
Theo đề bài ta có :
52 : x ; 36 : x (x là số lớn nhất )
\(\Rightarrow x\inƯCLN\left(52;36\right)\)
\(ƯCLN\left(52;36\right)=2^2=4\)
Vậy với cách chia có độ dài là 4 m là lớn nhất
Chúc bạn học tốt !!!
Bài giải
Gọi x là độ dài lớn nhất của cạnh hình (x \(\in\)N*)
Theo đề bài, có: 52 \(⋮\)x ; 36 \(⋮\)x và x lớn nhất
Suy ra x \(\in\)ƯCLN (52; 36)
52 = 22.13
36 = 22.32
ƯCLN (52; 36) = 22 = 4
Suy ra x = 4 (m)
Vậy độ dài lớn nhất của cạnh hình vuông là 4 m
Với cách chia là mỗi hình vuông có cạnh 4 m
Click vào trong câu hỏi tương tự nha bạn !
Lời giải:
Gọi độ dài cạnh hình vuông là $x$ (m)
Để chia đám đất hcn kia thành các hình vuông bằng nhau thì:
$52\vdots x, 36\vdots x$ hay $x$ là ƯC$(36,52)$
Để $x$ lớn nhất thì $x=ƯCLN(36,52)$
Ta thấy:
$36=2^2.3^2$
$52=2^2.13$
$\Rightarrow x=ƯCLN(36,52)=2^2=4$ (m)
Vậy cạnh hình vuông lớn nhất là $4$ (m)
Gọi x là cạnh hình vuông lớn nhất .
Theo đề bài ta có : Để thõa mãn đề bài : 52 : x ; 36 : x ( x là số lớn nhất ) ( 1 )
=> x là ƯCLN ( 52 ; 36 ) 52 = 22 x 13
36 = 22 x 32 ƯCLN ( 52 ; 36 ) = 22 = 4
Vậy với cách chia có độ dài là 4m là lớn nhất
Lời giải:
Gọi $x$ là độ dài cạnh của đám đất hình vuông. Khi đó, $x$ phải là ước của $52$ và $36$
Để $x$ lớn nhất thì $x=ƯCLN(52,36)$
$\Rightarrow x=4$ (m)
Vậy chia đám đất thành các mảnh đất hình vuông có độ dài 4m.
Gọi x là cạch hình vuông lớn nhất
Theo đề ta có:
Để thỏa mãn đề bài:
52:x; 36:x với x là số lớn nhất (1)
=>x là ước chung lớn nhất của 52;36
52=2^2.13
36=2^2.3^3
=>ƯCLN (52;36)=2^2=4
Vậy với cách chia có độ dài là 4m là số lớn nhất
\(54=3^3\cdot2;120=2^3\cdot3\cdot5\)
=>\(ƯCLN\left(54;120\right)=3\cdot2=6\)
Để có thể chia mảnh đất ấy thành các mảnh hình vuông bằng nhau thì độ dài cạnh hình vuông phải là ước chung của 120 và 54(1)
Gọi độ dài cạnh hình vuông lớn nhất có thể là x(m)
Từ (1) suy ra \(x\inƯC\left(54;120\right)\)
mà x lớn nhất
nên x=ƯCLN(54;120)=6(m)
Gọi cạnh nhình vuông lớn nhất là a(a thuộc N)
Vì chia mảnh đất thành những khoảnh nhình vuông bằng nhau
=>52 chia hết cho a
36 chia hết cho a
a lớn nhất
=> a = ƯCLN(52,36)
Ta có
52=22*13
36=22*32
=> a=22=4
Vậy cạnh hình vuông lớn nhất là 4m
Gọi x là cạnh hình vuông lớn nhất
Theo đề bài ta có:
Để thỏa mãn đề bài:
52:x ;36:x (x là số lớn nhất)
=> x là WWCLN (52 ;36)
52=2^2 x 13
36 = 2^2 x3^3
ƯCLN (52 ;36) =2^2=4
Vậy với cách chia có độ dài là 4m là lớn nhất