1.
So sánh : \(25^{^{20}}va16^{10}.3^{40}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(\frac{16}{25}\right)^{10}=\left(\frac{4^2}{5^2}\right)^{10}=\left(\frac{4}{5}\right)^{2.10}=\left(\frac{4}{5}\right)^{20}\)
\(\left(\frac{3}{7}\right)^{40}=\left(\frac{3}{7}\right)^{2.20}=\left(\frac{3^2}{7^2}\right)^{20}=\left(\frac{9}{49}\right)^{20}\)
Vì 20 = 20 và \(\frac{4}{5}>\frac{9}{49}\)nên \(\left(\frac{4}{5}\right)^{20}>\left(\frac{9}{49}\right)^{20}\)
Vậy \(\left(\frac{16}{25}\right)^{10}>\left(\frac{3}{7}\right)^{40}\)
a) \(10^{30}=2^{30}.5^{30}=2^{30}.\left(5^3\right)^{10}=2^{30}.125^{10}\)
\(2^{100}=2^{30}.2^{70}=2^{30}.\left(2^7\right)^{10}=2^{30}.128^{10}\)
mà \(125^{10}< 128^{10}\)
\(\Rightarrow10^{30}< 2^{100}\)
b) \(5^{40}=\left(5^4\right)^{10}=625^{10}>620^{10}\)
\(5^{40}>620^{10}\)
c) \(8^{25}=\left(2^3\right)^{75}=2^{75}\)
\(16^{19}=\left(2^4\right)^{19}=2^{76}>2^{75}\)
\(\Rightarrow16^{19}>8^{25}\)
a,1030 và 2100
1030=(103)10=100010
2100=(210)10=102410
Vì 100010<102410 nên 1030<2100.
b,540 và 62010
540=(54)10=62510>62010
=>540>62010.
c,825 và 1619
Nhân 825 và 1619 với 4 , ta được
3225 và 6419
3225=(325)5=335544325
6419<6420=(644)5=167772165
Vì 335544325>167772165 nên 825>1619
Trả lời:
a, Ta có: 320 ; 274 = ( 33 )4 = 312
Vì 320 > 312 nên 320 > 274
b, 225 ; 166 = ( 24 )6 = 224
Vì 225 > 224 nên 225 > 166
a)dễ thấy :
3^200 = (3^2)^100=9^100
2^300=(2^3)^100=8^100
nên.......
b)tương tự :
125^5=5^15
25^7=5^14
=> ......
c) 9^20 = 3^40
27^13=3^39
=>..........
các câu còn lại tương tự như 3 câu trên nhé ..... ^^
__cho_mình_nha_chúc_bạn_học _giỏi__
a, 3^200= (3^2)^100= 9^100
2^300= (2^3)^100= 8^100
Vì 9^100>8^100 nên 3^200>2^300
b, 125^5= (5^3)^5= 5^15
25^7= (5^2)^7= 5^14
Vì 5^15>5^14 nên 125^5>25^7
Lời giải:
$A=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}$
$B=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}$
Vì $20^{10}-1> 20^{10}-3$
$\Rightarrow \frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}$
$\Rightarrow 1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}$
$\Rightarrow A< B$
ta có: 2010 + 1 > 2010 - 1
\(\Rightarrow A=\frac{20^{10}+1}{20^{10}-1}>1\)
Lại có: 2010 -1 < 2010 - 3
\(\Rightarrow B=\frac{20^{10}-1}{20^{10}-3}< 1\)
=> A > B
\(20^{10}=2^{10}.5^{10}<5^{10}.5^{30}=5^{40}\)
Vậy 5^40 > 20^10
Ta có :\(25^{20}=\left(25^2\right)^{10}=625^{10}\)
\(16^{10}.3^{40}=16^{10}.\left(3^4\right)^{10}=16^{10}.81^{10}=\left(16.81\right)^{10}=1296^{10}\)
Vì \(1296^{10}>625^{10}\)
\(\Rightarrow25^{20}< 16^{10}.3^{40}\)