\(Chung\) \(minh\) \(S< \dfrac{25}{8}\)
\(S=\dfrac{2}{1+3}+\dfrac{2}{1+3+5}+\dfrac{2}{1+3+5+7}+...+\dfrac{2}{1+3+5+7+...+2023}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
o: \(\dfrac{\left(-1\right)^6\cdot3^5\cdot4^3}{9^2\cdot2^5}=\dfrac{3^5\cdot2^6}{2^5\cdot3^4}=\dfrac{3^5}{3^4}\cdot\dfrac{2^6}{2^5}=3\cdot2=6\)
s: \(\dfrac{\dfrac{2}{7}+\dfrac{2}{5}+\dfrac{2}{17}-\dfrac{2}{25}}{\dfrac{3}{14}+\dfrac{3}{10}+\dfrac{3}{34}-\dfrac{3}{50}}\)
\(=\dfrac{2\left(\dfrac{1}{7}+\dfrac{1}{5}+\dfrac{1}{17}-\dfrac{1}{25}\right)}{\dfrac{3}{2}\left(\dfrac{1}{7}+\dfrac{1}{5}+\dfrac{1}{17}-\dfrac{1}{25}\right)}\)
\(=2:\dfrac{3}{2}=\dfrac{4}{3}\)
t: \(\sqrt{\dfrac{4}{9}}-\dfrac{1}{2}:\left|-\dfrac{2}{3}\right|\)
\(=\dfrac{2}{3}-\dfrac{1}{2}:\dfrac{2}{3}\)
\(=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8-9}{12}=-\dfrac{1}{12}\)
1) Ta có: \(\left(-\dfrac{2}{3}\right)^2\cdot\dfrac{-9}{8}-25\%\cdot\dfrac{-16}{5}\)
\(=\dfrac{4}{9}\cdot\dfrac{-9}{8}-\dfrac{1}{4}\cdot\dfrac{-16}{5}\)
\(=\dfrac{-1}{2}+\dfrac{4}{5}\)
\(=\dfrac{-5}{10}+\dfrac{8}{10}=\dfrac{3}{10}\)
2) Ta có: \(-1\dfrac{2}{5}\cdot75\%+\dfrac{-7}{5}\cdot25\%\)
\(=\dfrac{-7}{5}\cdot\dfrac{3}{4}+\dfrac{-7}{5}\cdot\dfrac{1}{4}\)
\(=\dfrac{-7}{5}\left(\dfrac{3}{4}+\dfrac{1}{4}\right)=-\dfrac{7}{5}\)
3) Ta có: \(-2\dfrac{3}{7}\cdot\left(-125\%\right)+\dfrac{-17}{7}\cdot25\%\)
\(=\dfrac{-17}{7}\cdot\dfrac{-5}{4}+\dfrac{-17}{7}\cdot\dfrac{1}{4}\)
\(=\dfrac{-17}{7}\cdot\left(\dfrac{-5}{4}+\dfrac{1}{4}\right)\)
\(=\dfrac{17}{7}\)
4) Ta có: \(\left(-2\right)^3\cdot\left(\dfrac{3}{4}\cdot0.25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)\)
\(=\left(-8\right)\cdot\left(\dfrac{3}{4}\cdot\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=\left(-8\right)\cdot\dfrac{3}{16}:\dfrac{54-28}{24}\)
\(=\dfrac{-3}{2}\cdot\dfrac{24}{26}\)
\(=\dfrac{-72}{52}=\dfrac{-18}{13}\)
e: \(=\dfrac{5^{30}\cdot3^{20}}{3^{15}\cdot5^{30}}=3^5=243\)
=> 4S = 1 + 2/4 + 3/4^2 +...+ 2023/4^2022
=> 4S-S = 1 + (2/4-1/4) + (3/4^2 - 2/4^2) +...+ (2023/4^2022 - 2022/4^2022) - 2023/4^2023
=> 3S = 1 + 1/4 + 1/4^2 +...+ 1/4^2022 - 2023/4^2023
=> 12S = 4 + 1 + 1/4 +... + 1/4^2021 - 2023/4^2022
=> 12S - 3S = 4 + (1-1) + (1/4-1/4) +... + (1/4^2021 - 1/4^2021) - 1/4^2022 - 2023/4^2022 + 2023/4^2023
=> 9S = 4 - 1/4^2022 - 2023/4^2022 + 2023/4^2023
= 4- 2024/4^2022 + 2023/4^2023
Do 2024/4^2022 > 2024/4^2023 > 2023/4^2023 nên - 2024/4^2022 + 2023/4^2023 < 0
=> 9S < 4 < 9/2
=> S < 1/2 (đpcm)
Ta có S = \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2023}{4^{2023}}\)
4S = \(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2023}{4^{2022}}\)
4S - S = ( \(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2023}{4^{2022}}\) ) - ( \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2023}{4^{2023}}\))
3S = 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}-\dfrac{2023}{4^{2023}}\)
Đặt A = 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}\)
4A = 4 + 1 + \(\dfrac{1}{4}+...+\dfrac{1}{4^{2021}}\)
4A - A = ( 4 + 1 + \(\dfrac{1}{4}+...+\dfrac{1}{4^{2021}}\)) - ( 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}\))
3A = 4 - \(\dfrac{1}{4^{2022}}\)
A = ( 4 - \(\dfrac{1}{4^{2022}}\)) : 3 = \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\)
⇒ 3S = \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\) - \(\dfrac{2023}{4^{2023}}\)
S = ( \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\) - \(\dfrac{2023}{4^{2023}}\)) : 3 = \(\dfrac{4}{9}-\dfrac{1}{4^{2022}\cdot3^2}-\dfrac{1}{4^{2023}\cdot3}< \dfrac{4}{9}< \dfrac{1}{2}\)
Vậy S < \(\dfrac{1}{2}\)
-6/8=-3/2
2/7
Quy đồng được 12/20+-35/20=-23/20
Quy đồng được -10/15+3/15=-7/15
Quy đồng lên được -4/26+-5/26=-9/26
Quy đồng lên được: -12/21+7/21=-5/21 nhé
\(\dfrac{-1}{8}+\dfrac{-5}{8}=\dfrac{-6}{8}=\dfrac{-3}{4}\)
\(\dfrac{-3}{7}+\dfrac{5}{7}=\dfrac{2}{7}\)
\(\dfrac{3}{5}+\dfrac{-7}{4}=\dfrac{12}{20}+\dfrac{-35}{20}=\dfrac{-23}{20}\)
\(\dfrac{-2}{3}+\dfrac{1}{5}=\dfrac{-10}{15}+\dfrac{3}{15}=\dfrac{-13}{15}\)
\(\dfrac{2}{13}+\dfrac{-5}{26}=\dfrac{-4}{26}+\dfrac{-5}{26}=\dfrac{-9}{26}\)
\(\dfrac{-4}{7}+\dfrac{1}{3}=\dfrac{-12}{21}+\dfrac{7}{21}=\dfrac{-5}{21}\)
a: \(=\dfrac{-7}{8}\left(\dfrac{3}{5}+\dfrac{2}{5}\right)+3+\dfrac{7}{8}=\dfrac{-7}{8}+\dfrac{7}{8}+3=3\)
b: \(=-\dfrac{8}{5}:\dfrac{5}{3}=-\dfrac{24}{25}\)
c: \(=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{3}{4}=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{6}{8}=\dfrac{6}{7}-\dfrac{5}{8}=\dfrac{48}{56}-\dfrac{35}{56}=\dfrac{13}{56}\)
S=2/1+3 + 2/1+3+5 + 2/1+3+5+7 + .... + 2/1+3+5+...+2023
S=2/2.4/2 + 2/3.6/2 + 2/4.8/2 + ..... + 2/1012.2024/2
S=4/2.4 + 4/3.6 + 4/4.8 + .... + 4/1012.2024
S=4/2(1/2.2 + 1/3.3 + 1/4.4 + .... + 1/1012.1012)
S=2(1/2.2 + 1/3.3 + 1/4.4 + ... + 1/1012.1012)
Ta có
1/2.2 < 1/1.2
1/3.3 < 1/2.3
1/4.4. < 1/3.4
......
1/1012.1012 < 1/1011.1012
=>1/2.2+1/3.3+1/4.4+...+1/1012.1/1012<1/1.2+1/2.3+1/3.4+...+
1/1011.1012
=>1/2.2+1/3.3+1/4.4+...+1/1012.1012<1-1/2+1/2-1/3+1/3-1/4+...+
1/1011-1/1012
=>1/2.2+1/3.3+1/4.4+...+1/1012.1012<1-1/1012<1
=>2(1/2.2+1/3.3+1/4.4.+...+1/1012.1012=S<2.1=2
mà 25/8 >2
=>25/8>S (đpcm)
Viết vậy khó nhìn quá