K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

Đơn giản là sét số dư của n khi chia cho 3 

+) Nếu n = 3k ( k thuộc N ) 

x^2n + x^n + 1 = x^6k + x^3k + 1 = ( x^6k - 1 ) + ( x^3k - 1 ) + 3 

x^6k - 1 , x^3k - 1 :/ x^3 - 1 :/ ( x² + x + 1 ) 

=> x^2n + x^n + 1 chia x² + x + 1 dư 2 => Vô lý 

+) n = 3k + 2 

x^2n + x^n + 1 = x.x^(3(2k+1)) + x².x^3k + 1 = x( x^(3(2k+1) - 1 ) + x²( x^3k - 1 ) + ( x² + x + 1 ) 

x( x^(3(2k+1) - 1 ) + x²( x^3k - 1 ) + ( x² + x + 1 ) :/ x² + x + 1 

=> n = 3k + 2 thỏa mán đề bài 

làm tương tự trường hợp n = 3k + 1 cũng thỏa mãn đề bài 

Vậy mọi n có dạng 3k + 2 hoặc 3k + 1 đều thỏa mãn đề bài 

- - - - - - - - - 

Chú ý :/ là chia hết , x^3k - 1 luôn chia hết cho x² + x + 1

 n = 3k + 2 x^2n + x^n + 1 = x.x^(3(2k+1)) + x².x^3k + 1 = x( x^(3(2k+1) - 1 ) + x²( x^3k - 1 ) + ( x² + x + 1 ) x( x^(3(2k+1) - 1 ) + x²( x^3k - 1 ) + ( x² + x + 1 ) :/ x² + x + 1 đoạn này mk chưa hiểu lắm

 

7 tháng 2 2022

Vì \(A\left(x\right)=x^{2n}+x^n+1\) chỉ có một hằng số là1

đa thức \(x^2+x+1\) cũng chỉ có một hằng số là 1

Để \(A\left(x\right)⋮x^2+x+1\)  thì thì \(A\left(x\right)\) phải có số mũ tương ứng với các bậc như đa thức : => n=1

 

=>2n=2 và n=1

=>n=1

=>2n=2

hay n=1

A(x)=(1-x^n)(1+x^n)/(1-x)(1+x)

B(x)=1-x^n/1-x

A(x) chia hết cho B(x) khi 1-x^n chia hết cho 1+x

x^n+1/x+1=A(x)+(1+(-1)^n)/(x+1)

=>1-x^n chia hết cho 1+x khi và chỉ khi n=2k+1

29 tháng 5 2023

bn ơi mk chưa hiểu lời giải của bạn ạ

8 tháng 2 2016

a.đặt a+15=b2;a-1=c2

=>(a+15)-(a-1)=b2-c2=(b+c)(b-c)

=>(b+c)(b-c)=16

ta có 2 nhận xét:

*(b+c)-(b-c)=2c là 1 số chẵn nên 2 số b+c và b-c là 2 số cùng tính chẵn lẻ.Mà 16 là số chẵn nên 2 số b+c và b-c cùng chẵn.

*b+c>b-c(vì a là số tự nhiên)

=>b+c=8 và b-c=2 =>b=(8+2):2=5

vậy a+15=52=>a=10

17 tháng 1 2016

mình cũng lớp 6 nhưng đẻ chút nữa xem mình có làm đc ko

5 tháng 7 2019

Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo link trên nhé!

23 tháng 8 2023

a) Giả sử \(x^2+x⋮̸9\)

\(\Rightarrow x^2+x=x\left(x+1\right).x\left(x+1\right)⋮̸9\)

\(\Rightarrow x^2+x+1⋮̸9\)

\(\Rightarrow dpcm\)

b) \(x^2+x+1=3^y\)

\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)

Ta thấy \(x\left(x+1\right)\) là số chẵn

\(\left(1\right)\Rightarrow3^y-1\) là số chẵn

\(\Rightarrow y\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1\left(x\inℕ\right)\\y=2k+1\left(k\inℕ\right)\end{matrix}\right.\) thỏa đề bài

23 tháng 8 2023

Đính chính

a) Giả sử \(x^2+x\) \(⋮̸9\)

\(\Rightarrow x^2+x=x\left(x+1\right)\) \(⋮̸9\)

\(\Rightarrow x\left(x+1\right).x\left(x+1\right)\) \(⋮̸9\)

\(\Rightarrow x^2+x+1\) \(⋮̸9\)

b) \(x^2+x+1=3^y\)

\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)

mà \(\left\{{}\begin{matrix}x\left(x+1\right)\\3^y-1\end{matrix}\right.\) là số chẵn

\(\left(1\right)\Rightarrow\) \(\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1=2k\\\forall x;y;k\inℕ\end{matrix}\right.\)

\(\dfrac{X}{Y}=\dfrac{7}{5}x^{n-1}-x^{3-n}\)

Để X chia hết cho Y thì n-1>=0 và 3-n>=0

=>1<=n<=3

=>\(n\in\left\{1;2;3\right\}\)

29 tháng 10 2023

a: loading...

b: \(x^2+117=y^2\)

=>\(x^2-y^2=-117\)

=>\(\left(x-y\right)\left(x+y\right)=-117\)

\(Ư\left(-117\right)=\left\{1;-1;3;-3;9;-9;13;-13;39;-39;117;-117\right\}\)

=>\(-117=1\cdot\left(-117\right)=\left(-1\right)\cdot117=3\cdot\left(-39\right)=\left(-3\right)\cdot39=\left(9\right)\cdot\left(-13\right)=\left(-9\right)\cdot13\)

TH1: x-y=1 và x+y=-117

=>2x=-116 và x-y=1

=>x=-58(loại)

TH2: x-y=-1 và x+y=117

=>2x=118 và x-y=-1

=>x=59 và y=59+1=60(loại)

TH3: x-y=-3 và x+y=39

=>2x=42 và x-y=-3

=>x=21(loại)

TH4: x-y=3 và x+y=-39

=>2x=-42 và x-y=3

=>x=-21(loại)

TH5: x-y=9 và x+y=-13

=>2x=-4 và x-y=9

=>x=-2(loại)

TH6: x-y=-9 và x+y=13

=>2x=4 và x-y=-9

=>x=2 và y=2+9=11

=>Nhận

Vậy: x=2 và y=11