chứng minh -x2+4x-4 luôn không dương
giải giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4/ Chứng minh rằng :a. 76 +75 – 74 chia hết cho 11 . bạn nào giúp mình với (giải thích cho mình hiểu luôn nha các bạ... - Hoc24
\(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\cdot55⋮11\)
Đặt \(N=n^4+4n^3+7n^2+6n+3=\left(n^2+n+1\right)\left(n^2+3n+3\right)\)
Do \(n\) và \(n+1\) luôn khác tính chẵn lẻ \(\Rightarrow n^2\) và \(n+1\) khác tính chẵn lẻ
\(\Rightarrow n^2+n+1\) luôn lẻ
Gọi \(d=ƯC\left(n^2+n+1;n^2+3n+3\right)\) \(\Rightarrow d\) lẻ
\(\Rightarrow n^2+3n+3-\left(n^2+n+1\right)⋮d\)
\(\Rightarrow2\left(n+1\right)⋮d\)
\(\Rightarrow n+1⋮d\)
\(\Rightarrow\left(n+1\right)^2⋮d\Rightarrow\left(n+1\right)^2-\left(n^2+n+1\right)⋮d\)
\(\Rightarrow n⋮d\Rightarrow n+1-n⋮d\Rightarrow d=1\)
\(\Rightarrow n^2+n+1\) và \(n^2+3n+3\) nguyên tố cùng nhau
Giả sử tồn tại m nguyên dương thỏa mãn: \(\left(n^2+n+1\right)\left(n^2+3n+3\right)=m^3\)
Hiển nhiên \(m>1\), do \(n^2+n+1\) và \(n^2+3n+3\) nguyên tố cùng nhau, đồng thời \(n^2+3n+3>n^2+n+1\)
\(\Rightarrow\left\{{}\begin{matrix}n^2+n+1=1\\n^2+3n+3=m^3\end{matrix}\right.\)
Từ \(n^2+n+1=1\Rightarrow\left[{}\begin{matrix}n=-1\\n=0\end{matrix}\right.\) đều ko thỏa mãn n nguyên dương
Vậy N luôn luôn ko là lập phương
\(A=x^2+x+1=x^2+2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
A= x2 + x + 1
A = x2 + 2. \(\dfrac{1}{2}\). x + (\(\dfrac{1}{2}\))2 +\(\dfrac{3}{4}\)
A = ( x + \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) ≥ \(\dfrac{3}{4}\)
Vậy, x2 + x + 1>0 với mọi x
Đúng thì like giúp mik nha. Thx bạn
a: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
b: \(2x^2+8x+15\)
\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2+7>0\forall x\)
\(x^2-2xy+2y^2+2y+5=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)+4=\left(x-y\right)^2+\left(y+1\right)^2+4\)
Do \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\)
\(\Rightarrow\left(x-y\right)^2+\left(y+1\right)^2+4>0\) ; \(\forall x;y\)
a) Ta có: 108=1000...0(có 8 chữ số 0)
107=1000...0(có 7 chữ số 0)
Mà 108+107+7=1000...0(có 8 chữ số 0)+1000...0(có 7 chữ số 0)+7=11000...07(có 6 chữ số 0)\(⋮\)9
\(\Rightarrow\)11000...07(có 6 chữ số 0) là hợp số
hay 108+107+7 là hợp số
Vậy 108+107+7 là hợp số.
nếu là chính phương thì ntn nha
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
đặt \(t=n^2+3n\left(t\in Z^+\right)\)
phương trình thành:
\(t\left(t+2\right)=t^2+2t\)
vì \(t^2< t^2+2t< t^2+2t+1\)
hay \(t^2< t^2+2t< \left(t+1\right)^2\)
=> \(t^2+2t\) không thể là số chính phương
=>\(n\left(n+2\right)\left(n+2\right)\left(n+3\right)\) luôn luôn không thể là số chính phương
Ta có:
\(-x^2+4x-4\\=-\left(x^2-4x+4\right)\\ =-\left(x-2\right)^2\)
Vì: \(\left(x-2\right)^2\ge0\rightarrow-\left(x-2\right)^2\le0\forall x\left(đpcm\right)\)