K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

Ta có: \(D=\left|x\right|+x\)

\(\Rightarrow\orbr{\begin{cases}D=-x+x=0\\D=x+x=2x\end{cases}}\)

Vậy Dmin= 0

7 tháng 11 2017

Bạn là ai vậy 

9 tháng 12 2016

+)Với \(x\le2016\)

=>\(A=\left|x-2016\right|+x-1=2016-x+x-1=2015\)

+)Với x>2016

=>\(A=\left|x-2016\right|+x-1=x-2016+x-1=2x-2017>2015\)

So sánh 2 trường hợp ta thấy A đạt giá trị nhỏ nhất là 2015 khi \(x\le2016\)

11 tháng 11 2016

-10

khi x=-8

9 tháng 8 2017

giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0

=> giá trị tuyệt đối x+10 cộng với 2005

sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005

Dấu bằng xảy ra <=> giá trị tuyệt đối x+10  bằng 0

=> x=-10

Vậy Min B = 2005 <=> x=-10

9 tháng 8 2017

i khó hỉu quá bn giải cả 2 câu nhé

6 tháng 1 2020

ta có /x-2/> hoặc = 0 

=> /x-2/-5 lớn hơn hoặc bằng -5 

dấu = xảy ra <=> x=2

17 tháng 9 2017

câu B: vì /3.x+1/ lớn hơn hoặc bằng 0

suy ra /3.x+1/ +1/4 lớn hơn hoặc bằng 0+1/4

suy ra B lớn hơn hoặc bằng 1/4

vậy Bmin là 1/4

câu C vì / 5-3.x / lớn hơn hoặc bằng 0

suy ra /5-3.x/ +1 lớn hơn hoặc bằng 0+1

suy ra C lớn hơn hoặc bằng 1

Vậy Cmin là 1

câu D vì /4+1/2.x/ lớn hơn hoặc bằng 0

suy ra /4+1/2.x/ +7 lớn hơn hoặc bằng 0+7

suy ra D lớn hơn hoặc bằng 7 

vậy Dmin là 7

17 tháng 9 2017

nhớ k nha

15 tháng 2 2016

|x-2001|+|x-1|=|x-2001|+|1-x|

BĐT gttđ:|a+b| > |a+b|

áp dụng:=>|x-2001|+|1-x| > |(x-2001)+(1-x)|=2000

=>Amin=2000

dấu "=" xảy ra<=>(x-2001)(x-1)>0 tức 1<x<2000

19 tháng 4 2022

*\(x\ge\dfrac{1}{2}\Leftrightarrow\left|2x-1\right|=2x-1\)

\(D=\left(2x-1\right)^2-3\left(2x-1\right)+2=\left(2x-1\right)^2-2.\dfrac{3}{2}\left(2x-1\right)+\dfrac{9}{4}-\dfrac{1}{4}=\left(2x-1-\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(2x-\dfrac{5}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)\(D_{min}=-\dfrac{1}{4}\Leftrightarrow x=\dfrac{5}{4}\left(1\right)\)

*\(x< \dfrac{1}{2}\Leftrightarrow\left|2x-1\right|=-2x+1\)

\(D=\left(2x-1\right)^2+3\left(2x-1\right)+2=\left(2x-1\right)^2+2.\dfrac{3}{2}\left(2x-1\right)+\dfrac{9}{4}-\dfrac{1}{4}=\left(2x-1+\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(2x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)\(D_{min}=-\dfrac{1}{4}\Leftrightarrow x=\dfrac{-1}{4}\left(2\right)\)
-Từ (1) và (2) suy ra \(D_{min}=-\dfrac{1}{4}\Leftrightarrow x\in\left\{\dfrac{5}{4};\dfrac{-1}{4}\right\}\)

 

19 tháng 4 2022

cảm ơn cậu nha! yeu