Các cạnh góc vuông của tam giác vuông có độ dài là a , b và diện tích tam giác bằng S . Tính các góc của tam giác vuông biết ( a + b )2 = 8S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích tam giác vuông là: \(S=\frac{a.b}{2}\)
Ta có: \(\left(a+b\right)^2=8S\)
\(\Rightarrow\left(a+b\right)^2=8.\frac{a.b}{2}\)
\(\Rightarrow\left(a+b\right)^2=4ab\)
\(\Rightarrow a^2+2ab+b^2=4ab\)
\(\Rightarrow a^2-2ab+b^2=0\)
\(\Rightarrow\left(a-b\right)^2=0\)
\(\Rightarrow a-b=0\Rightarrow a=b\)
Tam giác vuông có 2 cạnh bằng nhau nên đó là tam giác vuông cân
Vậy các góc của tam giác đó là \(90^0,45^0,45^0\)
Chúc bạn học tốt.
Gọi độ dài 2 cạnh tam giác l lượt là x, y (đk)
AD Pi- ta-go ta có : x^2+y^2=5^2=25 (1)
Mà diện tích tam giác = 6 (cm2) => x*y/2=6 => x*y=12 (2)ư
Từ (1), (2) ta có hpt
Giải hpt => x=3, y=4 hoạc x=4, y=3
Kl ...
Bài 8: Vì em nhắn tin nhờ cô giảng bài 8 nên cô chỉ giảng bài 8 thôi nhé
Gọi các cạnh góc vuông, cạnh huyền của tam giác cần tìm lần lượt là: a; b; c
Theo bài ra ta có: a+b+c =36; \(\dfrac{a}{b}\) = \(\dfrac{3}{4}\)
\(\dfrac{a}{b}\) = \(\dfrac{3}{4}\) ⇒ \(\dfrac{a}{3}\) = \(\dfrac{b}{4}\) ⇒ \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{a^2+b^2}{9+16}\) (1)
Vì tam giác vuông nên ta theo pytago ta có: a2 + b2 = c2 (2)
Thay (2) vào (1) ta có: \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{c^2}{25}\)
⇒ \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) = \(\dfrac{a+b+c}{3+4+5}\) = \(\dfrac{36}{12}\) = 3
a = 3.3 = 9 (cm)
b = 3.4 = 12 (cm)
c = 3.5 = 15 (cm)
Kết luận: độ dài cạnh bé của góc vuông là: 9 cm
dộ dài cạnh lớn của góc vuông là 12 cm
độ dài cạnh huyền là 15 cm
Bài 9:
a,Gọi độ dài cạnh góc vuông là: a
Theo pytago ta có: a2 + a2 = 22 = 4 ⇒ 2a2 = 4 ⇒ a2 = 2 ⇒ a = \(\sqrt{2}\)
b, Gọi độ dài cạnh góc vuông là :b
Theo pytago ta có:
b2 + b2 = 102 =100 ⇒ 2b2 = 100 ⇒ b2 = 50⇒ b = 5\(\sqrt{2}\)
Bài 8 cô làm rồi nhé.
Bài 10 ; Gọi độ dài các cạnh góc của tam giác vuông lần lượt là:
a; b theo bài ra ta có:
\(\dfrac{a}{5}\) = \(\dfrac{b}{12}\) \(\Rightarrow\) \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{a^2+b^2}{25+144}\) (1)
Theo pytago ta có: a2 + b2 = 522 = 2704 (2)
Thay (2) vào (1) ta có: \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{2704}{169}\) = 16
⇒ a2 = 25.16 = (4.5)2 ⇒ a = 20
b2 = 144.16 = (12.4)2 ⇒ b = 48
( a +b)^2 = a^2 + b^2 + 2ab = 8S
S = 1/2 ab thay vào ta có :
a^2 + b^2 + 2ab = 8.1/2.a.b
a^2 + b^2 + 2ab = 4ab
=> a^2 + b^2 - 2ab - 4ab = 0
=> a^2 - 2ab + b^2 = 0 => ( a - b)^2 = 0 => a - b = 0 => a = b
=> tam giác Đó vuông cân
=> HAi góc còn lại là 45 độ