K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P
Phong
CTVHS
27 tháng 8 2024

Ta có:

`7^(n+4)-7^n`

`=7^n*7^4-7^n`

`=7^n*(7^4-1)`

`=7^n*2400` 

Mà: 2400 chia hết cho 30

`=>7^n*2400` chia hết cho 30 

`=>7^(n+4)-7^n` chia hết cho 30

27 tháng 8 2024

Ta có:

\(7^{n+4}-7^n=7^n\cdot7^4-7^n=7^n\cdot\left(2401-1\right)=7^n\cdot2400\)

Ta thấy: 

\(2400⋮30\rightarrow7^n\cdot2400⋮30\left(đpcm\right)\)

Vậy:   \(7^{n+4}-7^n⋮30\forall x\in N\)

10 tháng 2 2017

a, Ta thấy:  3 n + 2 + 3 n = 3 n . 3 2 + 3 n

=  3 n 3 2 + 1 =  3 n . 10 chia hết cho 10

=>  3 n + 2 + 3 n  chia hết cho 10, nN

b,  7 n + 4 - 7 n = 7 n . 7 4 - 7 n

7 n 7 4 - 1 = 7 n . 2400 chia hết cho 30

=> 7 n + 4 - 7 n  chia hết cho 30, nN

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

Lời giải:
Vì $7^n$ không chia hết cho $3$ với mọi $n\in\mathbb{N}$ nên $7^n$ có dạng $3k+1$ hoặc $3k+2$ với $k\in\mathbb{N}$

Nếu $7^n=3k+1$ thì:

$(7^n+1)(7^n+2)=(3k+2)(3k+3)=3(3k+2)(k+1)\vdots 3(1)$

Nếu $7^n=3k+2$ thì:

$(7^n+1)(7^n+2)=(3k+3)(3k+4)=3(k+1)(3k+4)\vdots 3(2)$

Từ $(1);(2)$ suy ra $(7^n+1)(7^n+2)$ luôn chia hết cho $3$

AH
Akai Haruma
Giáo viên
19 tháng 10 2019

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

AH
Akai Haruma
Giáo viên
3 tháng 10 2019

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

7 tháng 8 2017
Giúp đi!!!! Làm ơn !!!!!
7 tháng 8 2017

trên mạng có ak

\(A=n^3-n-6n\)

\(=n\left(n-1\right)\left(n+1\right)-6n\)

Vì n;n-1;n+1 là ba số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)

hay A chia hết cho 6