K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{6x}{15y^3}\cdot\dfrac{10y^3}{x^2}=\dfrac{6x}{x^2}\cdot\dfrac{10y^3}{15x^3}=\dfrac{6}{x}\cdot\dfrac{2}{3}=\dfrac{4}{x}\)

26 tháng 8 2024

\(\dfrac{6x}{15y^3}\cdot\dfrac{10y^3}{x^2}=\dfrac{6x\cdot10y^3}{15y^3\cdot x^2}=\dfrac{2\cdot3\cdot x\cdot5y^3\cdot2}{5y^3\cdot3\cdot x\cdot x}=\dfrac{4}{x}\)

16 tháng 12 2022

f: \(=\dfrac{5x-3-x+3}{4x^2y}=\dfrac{4x}{4x^2y}=\dfrac{1}{xy}\)

g: \(=\dfrac{3x+10-x-4}{x+3}=\dfrac{2x+6}{x+3}=2\)

h: \(=\dfrac{4-2+x}{x-1}=\dfrac{x+2}{x-1}\)

n: \(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{x\left(x+3\right)}=\dfrac{2}{x}\)

p: \(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)

k: \(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{x^2-4}\)

m: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)

1 tháng 12 2021

\(1,\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2-18+12}=\dfrac{24}{-4}=-6\\ \Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-36\\z=-18\end{matrix}\right.\\ 2,\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x+3-4y-12+5z-25}{-6-16+30}=\dfrac{50-34}{8}=\dfrac{16}{8}=2\\ \Leftrightarrow\left\{{}\begin{matrix}x-1=4\\y+3=8\\z-5=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=5\\z=17\end{matrix}\right.\)

\(3,6x=10y=15z\Leftrightarrow\dfrac{6x}{30}=\dfrac{10y}{30}=\dfrac{15z}{30}\\ \Leftrightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y-z}{5+3-2}=\dfrac{90}{6}=15\\ \Leftrightarrow\left\{{}\begin{matrix}x=75\\y=45\\z=30\end{matrix}\right.\)

a: 2x-3y-4z=24

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)

=>x=-6/7; y=-36/7; z=-18/7

b: 6x=10y=15z

=>x/10=y/6=z/4=k

=>x=10k; y=6k; z=4k

x+y-z=90

=>10k+6k-4k=90

=>12k=90

=>k=7,5

=>x=75; y=45; z=30

d: x/4=y/3

=>x/20=y/15

y/5=z/3

=>y/15=z/9

=>x/20=y/15=z/9

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)

=>x=500; y=375; z=225

11 tháng 8 2018

Đề bài???

11 tháng 8 2018

tìm x, y, z đó

31 tháng 10 2022

a: =>x^2+2x-3=x^2-4

=>2x=-1

=>x=-1/2

b: \(\dfrac{12x-15y}{7}=\dfrac{20z-15x}{9}=\dfrac{15y-20z}{11}\)

\(=\dfrac{12x-15y+20z-15x+15y-20z}{7+9+11}=\dfrac{-3x}{27}=\dfrac{-x}{9}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12x-15y}{7}=\dfrac{-x}{9}\\\dfrac{20z-15x}{9}=\dfrac{-x}{9}\\\dfrac{15y-20z}{11}=\dfrac{-x}{9}\\x+y+z=48\end{matrix}\right.\)

\(\Leftrightarrow\begin{matrix}-115x+135y=0\\20z-14x=0\\135y-180z+11x=0\\x+y+z=48\end{matrix}\)

=>\(\left(x,y,z\right)\in\varnothing\)

28 tháng 11 2021

\(=\dfrac{30\left(x^3-y^3\right)\left(x^2-y^2\right)}{3\left(x+y\right)\left(x^2+xy+y^2\right)}=\dfrac{10\left(x-y\right)^2\left(x+y\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)\left(x^2+xy+y^2\right)}=10\left(x-y\right)^2\)

24 tháng 9 2021

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

\(\left\{{}\begin{matrix}12x=15y\\20z=12x\\15y=20z\end{matrix}\right.\)

\(12x=15y=20z\)\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{5+4+3}=\dfrac{48}{12}=4\)

\(\left\{{}\begin{matrix}x=5.4=20\\y=4.4=16\\z=3.4=12\end{matrix}\right.\)

11 tháng 9 2019

Tính chất của dãy tỉ số bằng nhau

b: 2x^3-1=15

=>2x^3=16

=>x=2

\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)

=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)

=>y-25=32; z+9=50

=>y=57; z=41

d: 3/5x=2/3y

=>9x=10y

=>x/10=y/9=k

=>x=10k; y=9k

x^2-y^2=38

=>100k^2-81k^2=38

=>19k^2=38

=>k^2=2

TH1: k=căn 2

=>\(x=10\sqrt{2};y=9\sqrt{2}\)

TH2: k=-căn 2

=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)