K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

Ta có : \(A=\frac{x.\left(\sqrt{x}-1\right)}{2}\)

\(\Leftrightarrow A=\frac{\sqrt{x^3}-x}{2}\)

Để A có GTNN thì mẫu số phải lớn nhất , tử số phải bé nhất .

Có mẫu số luôn bằng 2 

=> \(\sqrt{x^3}-x\)nhỏ nhất .

Mà \(\sqrt{x^3}-x\ge0\forall x\)

\(\Rightarrow GTNN\)là 0 .

Ta có \(MIN\)của A=0

Dấu bằng xảy ra khi \(x.\left(\sqrt{x}-1\right)=0\Leftrightarrow\sqrt{x}-1=0\Leftrightarrow x=1\)

1 tháng 8 2017

2. Xem tại đây

1.  \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)

\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)

\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)

Đẳng thức xảy ra  \(\Leftrightarrow x=y=z=1\)

1 tháng 8 2017

1 ) có cách theo cosi đó 

áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)

\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)

\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)

cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)

minP=3 khi x=y=z=1

19 tháng 5 2017

2, rút gọn B=x^2/(y-1)+y^2/(x-1) 

AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y 

=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8 

minB=8 

19 tháng 5 2017

Câu 1:

Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)

\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)

\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)

Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)

Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:

\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)

\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)

Lại áp dụng BĐT AM-GM ta có:

\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)

\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Đẳng thức xảy ra khi \(x=y=1\)

14 tháng 7 2018

\(P=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\\ \)\(=\left(\frac{\sqrt{x}+1}{\sqrt{x}+1}-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right).\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x-2}\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{1}{\sqrt{x}+1}:\left(\frac{x-9}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}=\frac{1}{\sqrt{x}+1}:\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

b. 

\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)

Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\frac{3}{\sqrt{x}+1}\le3\Rightarrow1-\frac{3}{\sqrt{x}+1}\ge1-3=-2\Rightarrow P\ge-2\)

Dấu "=" xảy ra <=> x=0

vậy Min (P) = -2 <=> x=0

14 tháng 7 2018

Rút gọn: \(P=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

        \(=\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

          \(=\frac{1}{\sqrt{x}+1}:\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

           \(=\frac{1}{\sqrt{x}+1}:\left(\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

            \(=\frac{1}{\sqrt{x}+1}.\left(\sqrt{x}-2\right)=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

14 tháng 3 2018

Đặt A là biểu thức cần CM 

ví dụ Từ ĐK a + b + c = 3 => a² + b² + c² ≥ 3 ( Tự chứng minh ) 

Áp dụng BĐT quen thuộc x² + y² ≥ 2xy 

a^4 + b² ≥ 2a²b (1) 
b^4 + c² ≥ 2b²c (2) 
c^4 + a² ≥ 2c²a (3) 
 

14 tháng 3 2018

tiếp đi bạn huy