K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8

tìm x để e nó làm sao bạn ơi?

28 tháng 10 2019

Câu hỏi của TRẦN THỊ BÍCH HỒNG - Toán lớp 7 - Học toán với OnlineMath

6 tháng 5 2023

`a)` Thay `x=2` vào `B` có: `B=[-10]/[2-4]=5`

`b)` Với `x ne -1;x ne -5` có:

`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+1)(x+5)]`

`A=[x^2+x+2x+2-5x-1-x-5]/[(x+1)(x+5)]`

`A=[x^2-3x-4]/[(x+1)(x+5)]`

`A=[(x+1)(x-4)]/[(x+1)(x+5)]`

`A=[x-4]/[x+5]`

`c)` Với `x ne -5; x ne -1; x ne 4` có:

`P=A.B=[x-4]/[x+5].[-10]/[x-4]`

           `=[-10]/[x+5]`

Để `P` nguyên `<=>[-10]/[x+5] in ZZ`

    `=>x+5 in Ư_{-10}`

Mà `Ư_{-10}={+-1;+-2;+-5;+-10}`

`=>x={-4;-6;-3;-7;0;-10;5;-15}` (t/m đk)

Sorry tớ chưa học bạn ạ xin lỗi bạn nha ^_^

15 tháng 9 2019

ko ghi lại đề nha !!! 

D có giá trị âm khi

 \(x^2-\frac{2}{5}x< 0\)

Cho \(x^2-\frac{2}{5}x=0\)

<=> x(x - 2/5) = 0

<=> \(\orbr{\begin{cases}x=0\\x-\frac{2}{5}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{5}\end{cases}}\)

Bảng xét dấu:

x y=x y=x-2/5 VT -oo 0 2/5 +oo 0 0 + + - + - - 0 0 + - +

Vậy: biểu thức D nhận giá trị âm khi \(x\in\left(0;\frac{2}{5}\right)\)            ( có nghĩa là x sẽ bằng tất cả các số "từ lớn hơn 0 đến bé hơn 2/5 ) 

Chú ý: đây là cách giải của lớp 10 và 11 nếu em ko hiểu thì cx chịu chứ anh ko nhớ cách lớp 7

  ----câu E và F còn dễ hơn câu D này nữa nên em tự giải nha !!!!!!! 

5 tháng 10 2023

Bài 5

a) A = -x³ + 6x² - 12x + 8

= -x³ + 3.(-x)².2 - 3.x.2² + 2³

= (-x + 2)³

= (2 - x)³

Thay x = -28 vào A ta được:

A = [2 - (-28)]³

= 30³

= 27000

b) B = 8x³ + 12x² + 6x + 1

= (2x)³ + 3.(2x)².1 + 3.2x.1² + 1³

= (2x + 1)³

Thay x = 1/2 vào B ta được:

B = (2.1/2 + 1)³

= 2³

= 8

5 tháng 10 2023

Bài 6

a) 11³ - 1 = 11³ - 1³

= (11 - 1)(11² + 11.1 + 1²)

= 10.(121 + 11 + 1)

= 10.133

= 1330

b) Đặt B =  x³ - y³ = (x - y)(x² + xy + y²)

= (x - y)(x² - 2xy + y² + 3xy)

= (x - y)[(x - y)² + 3xy]

Thay x - y = 6 và xy = 9 vào B ta được:

B = 6.(6² + 3.9)

= 6.(36 + 27)

= 6.63

= 378

9 tháng 3 2020

a) P xác định khi và chỉ khi \(\hept{\begin{cases}2x+3\ne0\\2x+1\ne0\end{cases}}\Rightarrow x\ne\frac{-3}{2};x\ne\frac{-1}{2}\)

b) \(P=\frac{2}{2x+3}+\frac{3}{2x+1}-\frac{6x+5}{\left(2x+3\right)\left(2x+1\right)}\)

\(\Rightarrow P=\frac{2\left(2x+1\right)+3\left(2x+3\right)-\left(6x+5\right)}{\left(2x+3\right)\left(2x+1\right)}\)

\(\Rightarrow P=\frac{4x+2+6x+9-6x-5}{\left(2x+3\right)\left(2x+1\right)}\)

\(\Rightarrow P=\frac{4x+6}{\left(2x+3\right)\left(2x+1\right)}=\frac{2\left(2x+3\right)}{\left(2x+3\right)\left(2x+1\right)}\)

\(=\frac{2}{2x+1}\)

Vậy \(P=\frac{2}{2x+1}\)

c) \(P=1\Leftrightarrow\frac{2}{2x+1}=1\Leftrightarrow2x+1=2\Leftrightarrow x=\frac{1}{2}\left(tmdkxđ\right)\)

\(P=-3\Leftrightarrow\frac{2}{2x+1}=-3\Leftrightarrow2x+1=\frac{-2}{3}\Leftrightarrow x=\frac{-5}{6}\left(tmđkđ\right)\)

Vậy \(x=\frac{1}{2}\)thì P = 1; \(x=\frac{-5}{6}\)thì P = -3

d) \(P>0\Leftrightarrow\frac{2}{2x+1}>0\Leftrightarrow2x+1>0\Leftrightarrow x>\frac{-1}{2}\)

Vậy \(x>\frac{-1}{2}\)thì P > 0

9 tháng 7 2023

A = 12\(x\) - 4\(x^2\) + 3

A = -(4\(x^2\) - 2.2\(x\).3 + 9) + 12

A = -( 2\(x\) - 3)2 + 12

    (2\(x\)- 3)2 ≥  0 ⇒ -(2\(x\) - 3)2 ≤ 0 ⇒- (2\(x\) - 3)2 + 12 ≤ 12

Amax = 12⇔ 2\(x\) - 3 =  0 ⇒ \(x\) = \(\dfrac{3}{2}\)

Giá trị lớn nhất của A là 12 xảy ra khi \(x\) = \(\dfrac{3}{2}\)

B = 6\(x\) - \(x^2\) + 3 

B = - (\(x^2\) - 2.3\(x\) + 9) + 12

B = -(\(x\) - 3)2 + 12

(\(x\) - 3)2 ≥ 0 ⇒ -(\(x\) - 3)2 ≤ 0 ⇒ -(\(x\) - 3)2 + 12  ≤ 12 

Bmax = 12 ⇔ \(x\) - 3 = 0 ⇒ \(x\) = 3

Giá trị lớn nhất của B là 12 xảy ra khi \(x\) = 3

 

23 tháng 8 2018

bai1 : =5x2-3x-x3+x2+x3-6x2-10+3x

=(-10)

suy ra biểu thức ko phụ thuộc vào biến

23 tháng 8 2018

bài 2

2x2-10x-3x-2x2=26

-13x=26

x=2

27 tháng 10 2023

a: Khi x=25 thì \(A=\dfrac{5-2}{5-3}=\dfrac{3}{2}\)

b: P=A*B

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\left(\dfrac{6x+6\sqrt{x}-12}{x+5\sqrt{x}+4}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\left(\dfrac{6x+6\sqrt{x}-12}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\dfrac{6x+6\sqrt{x}-12-5x-5\sqrt{x}}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

c: \(\sqrt{P}< =\dfrac{1}{2}\)

=>0<=P<=1/4

=>\(\left\{{}\begin{matrix}P>=0\\P-\dfrac{1}{4}< =0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{x}-2}{\sqrt{x}-1}>=0\\\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{1}{4}< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{4\left(\sqrt{x}-2\right)-\sqrt{x}+1}{4\left(\sqrt{x}-1\right)}< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{3\sqrt{x}-7}{\sqrt{x}-1}< =0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< \sqrt{x}< =\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< x< \dfrac{49}{9}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\x=\dfrac{49}{9}\end{matrix}\right.\)

=>\(4< =x< =\dfrac{49}{9}\)

mà x nguyên

nên \(x\in\left\{4;5\right\}\)

1 tháng 12 2021

\(a,P=\dfrac{2x^2+2x+2+2x-1+x^2+6x+2}{\left(x-1\right)\left(x^2+x+1\right)}\\ P=\dfrac{3x^2+10x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)