K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 8 2024

\(2a+4b+6c=28\)

Do

\(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\ge0;\forall a;b;c\)

\(\Rightarrow a^2+b^2+c^2\ge2a+4b+6c-14=28-14=14\) (đpcm)

Dấu = xảy ra khi \(\left(a;b;c\right)=\left(1;2;3\right)\)

24 tháng 8 2024

\(14^2=\left(a+2b+3c\right)^2\)

\(\left(a+2b+3c\right)^2\le\left(1+4+9\right)\left(a^2+b^2+c^2\right)\)

\(\rightarrow a^2+b^2+c^2\ge14\left(đpcm\right)\)

9 tháng 1 2018

link: [Toán 8] Chứng mih $a^2+b^2+c^2\ge 14$ | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam

6 tháng 1 2019

Áp dụng bất đẳng thức Bunhiacốpxki, ta có: 

       \(\left(a^2+b^2+c^2\right)\left(1^2+2^2+3^2\right)\ge\left(a+2b+3c\right)^2\)

\(\Rightarrow\left(a^2+b^2+c^2\right).14\ge14^2\)

\(\Rightarrow a^2+b^2+c^2\ge14\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\\a+2b+3c=14\end{cases}}\)

\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\Rightarrow\frac{a}{1}=\frac{2b}{4}=\frac{3c}{9}\)

Áp dụng t/c dãy tỉ số bằng nhau: 

      \(\frac{a}{1}=\frac{2b}{4}=\frac{3c}{9}=\frac{a+2b+3c}{1+4+9}=\frac{14}{14}=1\)

\(\Rightarrow a=1,b=2,c=3\)

2 tháng 7 2023

a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}\) = \(\dfrac{3a}{3c}=\dfrac{2b}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}\) (1)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{3a}{3c}=\dfrac{2b}{2d}=\dfrac{3a-2b}{2c-2d}\) (2)

Từ (1) và(2) ta có:

\(\dfrac{2a+5b}{2c+5d}\) =  \(\dfrac{3a-2b}{3c-2d}\)(đpcm)

 

 

 

 

2 tháng 7 2023

a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}\)  ⇒ \(\dfrac{a.b}{c.d}\) = \(\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a.b}{c.d}=\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\) = \(\dfrac{a^2+b^2}{c^2+d^2}\) (đpcm)

 

 

5 tháng 2 2022

đặt a/b =c/d =k 

=> a=bm , c=dm 

=> 2a+3c/2b+3d =2bm+3bm/ 2b +3d = m.(2d+3d)/2d+3d =m (1)

=> 2a-3c/2d-3d=2bm-3dm /2b -3d =m.(2b-3d)/2b-3d= m (2)

Từ (1) và (2) => 2a+3c/2b+3d =2a-3c/2b-3d 

câu 2 tương tự nha

3 tháng 4 2023

bạn khôi đặt là k mà lại khi m