cho hình thoi ABCD có góc A bằng 90* tính số đo các góc còn lại của hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tihs chất hình thoi là 2 goc đối bằng nhau
Do C là góc đối của A mà A = 40 độ nên C = 40 độ
2 goc B và D cũng dối nhau nên bằng nhau
góc B cộng D = 360 - 40 - 40 = 280độ
=> B=D = 280:2=140 độ
Vì ABCD là hình thoi nên ⇒ tam giác ABD cân tại A
Vì O là trung điểm DB nên AO là truyến là đường phân giác của tam giác ABD
⇒ \(\widehat{DAO}\) = 400
⇒ \(\widehat{DAB}\) = 400 + 400 = 1800
⇒ \(\widehat{ADC}\) = 1800 - 800 = 1000
⇒ \(\widehat{DCB}\) = 1800 - 1000 = 800
\(\Rightarrow\) \(\widehat{ABC}\) = 1800 - 800 = 1000
1) \(S_{ABCD}=\dfrac{1}{2}.AC.BD\Rightarrow BD=\dfrac{2S_{ABCD}}{AC}=\dfrac{2.50\sqrt[]{3}}{10}=10\sqrt[]{3}\left(cm\right)\)
Gọi O là giao điểm AC và BD
\(\Rightarrow\left\{{}\begin{matrix}OA=\dfrac{1}{2}AC=5\left(cm\right)\\OB=\dfrac{1}{2}BD=5\sqrt[]{3}\left(cm\right)\end{matrix}\right.\)
Xét Δ vuông OAB có :
\(AB^2=OA^2+OC^2=25+25.3=100\left(cm^2\right)\left(Pitago\right)\)
\(\Rightarrow AB=10\left(cm\right)\)
2) Xét Δ vuông OAB có :
\(AB=2OA=10\left(cm\right)\)
⇒ Δ OAB là Δ nửa đều
\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABD}=30^o\\\widehat{BAC}=60^o\end{matrix}\right.\)
mà \(\left\{{}\begin{matrix}\widehat{BCD}=\widehat{BAD}=2\widehat{BAC}\\\widehat{ADC}=\widehat{ABC}=2\widehat{ABD}\end{matrix}\right.\) (tính chất hình thoi)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{BCD}=\widehat{BAD}=2.60=120^o\\\widehat{ADC}=\widehat{ABC}=2.30=60^o\end{matrix}\right.\)
-Gọi AC cắt BD tại O. Ta có MN=OB=OD(=1/2.BD).
-Ta có: tam giác BMD vuông tại M có O là trung điểm của BD nên MO=1/2.BD.
tam giác BND vuông tại N có O là trung điểm của BD nên NO=1/2.BD.
Suy ra: MO=ON=MN=BO=OD. => tam giác MON đều => góc MON=60 độ.
-Mà góc MOD=góc NOD=1/2. góc MON=30 độ và OM=OD => góc MDO=75 độ. => góc ADC=góc ABC=2.góc MDO= 150 độ.
=> góc BAD=góc BCD= 30 độ.
Vậy góc A và góc C của hình thoi ABCD bằng 30 độ; góc B và góc D của hình thoi bằng 150 độ.