1. Chứng minh\(\left(x^3+6x^2-19x-24\right)⋮6\)với \(x\in N\)
2. Tìm x và y thỏa mãn \(y^2+2\left(x^2+1\right)=2y\left(x+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(x-\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)
\(\Leftrightarrow-2\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)
\(\Leftrightarrow x-\sqrt{x^2+2}+y-1+\sqrt{y^2-2y+3}=0\) (*)
\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)\left(y-1-\sqrt{y^2-2y+3}\right)=2\left(y-1-\sqrt{y^2-2y+3}\right)\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right).-2=2\left(y-1-\sqrt{y^2+2y+3}\right)\)
\(\Leftrightarrow y-1-\sqrt{y^2+2y+3}+x+\sqrt{x^2+2}=0\) (2*)
Cộng vế với vế của (*) và (2*) => \(2x+2y-2=0\)
\(\Leftrightarrow x+y=1\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Leftrightarrow x^3+y^3+3xy=1\)
Ta có:`(x+sqrt{x^2+2})(sqrt{x^2+2}-x)=2`
`<=>sqrt{x^2+2}-x=y-1+sqrt{y^2-2y+3}`
`<=>sqrt{x^2+2}-sqrt{y^2-2y+3}=x+y-1(1)`
CMTT:`sqrt{y^2-2y+3}-(y-1)=x+sqrt{x^2+2}`
`<=>sqrt{y^2-2y+3}-y+1=x+sqrt{x^2+2}`
`<=>sqrt{y^2-2y+3}-sqrt{x^2+2}=x+y-1(2)`
Cộng từng vế (1)(2) ta có:
`2(x+y-1)=0`
`<=>x+y-1=0`
`<=>x+y=1`
`<=>(x+y)^3=1`
`<=>x^3+y^3+3xy(x+y)=1`
`<=>x^3+y^3+3xy=1`(do `x+y=1`)
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D
hùi nãy mem nào k sai cho t T_T t buồn
\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)
\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)
\(=\frac{27}{8}-\frac{3}{8}+6=9\)
\(\Rightarrow\)\(VT\ge9\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)
Chúc bạn học tốt ~
1. Ta có \(x^3+6x^2-19x-24=x^3+x^2+5x^2+5x-24x-24\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)-24\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+5x-24\right)\)
\(=\left(x+1\right)\left(x+8\right)\left(x-3\right)\)
Đặt x - 3 = k, biểu thức trở thành A = k(k + 4)(k + 11)
Ta thấy ngay A chứa ít nhất một số nhân tử là số chẵn nên A chia hết cho 2. Ta chỉ cần chứng minh A chia hết 3.
Thật vậy, nếu k = 3a thì A chia hết cho A.
Nếu k = 3a + 1 thì k + 11 = 3a + 1 + 11 = 3a + 12 chia hết 3
Nếu k = 3a + 2 thì k + 4 = 3a + 2 + 4 = 3a + 6 chia hết 3
Vậy A chia hết cho 2 và 3 mà (2;3) = 1 nên A chia hết cho 6.
2. \(y^2+2\left(x^2+1\right)=2y\left(x+1\right)\)
\(\Leftrightarrow y^2+2x^2+2=2xy+2y\)
\(\Leftrightarrow y^2+2x^2+2-2xy-2y=0\)
\(\Leftrightarrow2y^2+4x^2+4-4xy-4y=0\)
\(\Leftrightarrow\left(y^2-4y+4\right)+\left(4x^2-4xy+y^2\right)=0\)
\(\Leftrightarrow\left(y-2\right)^2+\left(2x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(y-2\right)^2=0\\\left(2x-y\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\2x=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy x = 1, y = 2