Tìm số nguyên n bt:
\(\dfrac{8}{2.n}\)=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


=>-3<n<=4
hay \(n\in\left\{-2;-1;0;1;2;3;4\right\}\)

\(\dfrac{1}{2.2}.\dfrac{2}{2.3}.....\dfrac{31}{64}=2^x\\ =>\dfrac{1}{2.2.2.....2.64}=2^x\\ \dfrac{1}{2^{30}.26}=2^x\\ =>\dfrac{1}{2^{36}}=2^x\\ =>2^{-36}=2^x\\ =>x=-36\)

#)Giải :
1.a) Để A là phân số \(\Rightarrow\) -5 không chia hết cho n - 2 \(\Rightarrow n-2\notinƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\notin\left\{\pm3;7;1\right\}\)
b) Để A nguyên \(\Rightarrow-5⋮n-2\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\in\left\{\pm3;7;1\right\}\)

bài 1
để A∈Z
\(=>n+3\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}n+3=-1\\n+3=1\end{matrix}\right.=>\left\{{}\begin{matrix}n=-4\\n=-2\end{matrix}\right.\)
vậy \(n\in\left\{-4;-2\right\}\) thì \(A\in Z\)

Để \(A = \dfrac{n}{n+2}\) là số nguyên .
=> \(n \vdots n+2\)
=> \(n-( n + 2 ) \vdots n + 2\)
=> \(-2 \vdots n + 2\) hay \(n + 2 \in\) Ư(-2 ) = { \(\pm1 ; \pm2 \) }
Lập bảng :
\(\begin{array}{|c|c|c|}\hline \text{n+2}&\text{1}&\text{-1}&\text{2}&\text{-2}\\\hline \text{n}&\text{-1}&\text{-3}&\text{0}&\text{-4}\\\hline \text{Kiểm tra }&\text{thỏa mãn }&\text{thỏa mãn }&\text{thỏa mãn }&\text{thỏa mãn }\\\hline\end{array}\)
Vậy \(x \in \) { \(0;-1;-3;-4\) }

\(a,=\dfrac{\sqrt{x}-8+5}{\sqrt{x}-8}=1+\dfrac{5}{\sqrt{x}-8}\in Z\\ \Leftrightarrow\sqrt{x}-8\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{3;7;9;13\right\}\\ \Leftrightarrow x\in\left\{9;49;81;169\right\}\left(tm\right)\\ b,=\dfrac{\sqrt{x}-2+7}{\sqrt{x}-2}=1+\dfrac{7}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(7\right)=\left\{-1;1;7\right\}\left(\sqrt{x}-2>-2\right)\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;9\right\}\\ \Leftrightarrow x\in\left\{1;9;81\right\}\\ c,=\dfrac{2\left(\sqrt{x}+3\right)+2}{\sqrt{x}+3}=2+\dfrac{2}{\sqrt{x}+3}\in Z\\ \Leftrightarrow\sqrt{x}+3\inƯ\left(2\right)=\varnothing\left(\sqrt{x}+3>3\right)\\ \Leftrightarrow x\in\varnothing\)

a) \(\dfrac{1}{8}.16^n=2^n\)
=>\(\dfrac{2^{4n}}{2^3}=2^n\)
=>\(2^{4n-3}=2^n\)
=>4n-3=n
=>3n-3=0
=>n=1.
b) \(27< 3^n< 243\)
=>\(3^3< 3^n< 3^5\). Mà n là số tự nhiên.
- Vậy n=4
a) \(\dfrac{1}{8}.16^n=2^n\)
\(\Rightarrow2^{4n}=2^3.2^n\)
\(\Rightarrow4n=3+n\)
\(\Rightarrow3n=3\)
\(\Rightarrow n=1\)
Vậy: \(n=1\)
b) \(27< 3^n< 243\)
\(\Rightarrow3^3< 3^n< 3^5\)
\(\Rightarrow3< n< 5\)
\(\Rightarrow n=4\)
Vậy: \(n=4\)
\(\dfrac{8}{2\cdot n}=2\\ \Rightarrow2\cdot n\cdot2=8\\ \Rightarrow4\cdot n=8\\ \Rightarrow n=8:4\\ \Rightarrow n=2\)
\(\dfrac{8}{2.n}=2\)
\(8:2.n=2\)
\(2.n=8:2\)
`2.n = 4`
` n = 4 : 2`
` n = 2`
Vậy `n = 2`