cho S=1+8^2+8^4+...+8^2002
a) chứng minh S chia hết cho 65
b) tính S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các bn giúp mk nha mk đang rất cần ai trả lwofi đầu tiên và chính xác mk tích cho
- Chứng minh tích 2 số tự nhiên chẵn liên tiếp chia hết cho 8
Ta có tích 2 số tự nhiên liên tiếp chia hết cho 2
Gọi 2 số tự nhiên chẵn liên tiếp là 2k, 2k+2 với k thuộc N
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k(2k+2) chia hết cho 8
- Ta có 1111...11 không chia hết cho 2
=> 4444...444=4x111...11 không chia hết cho 8
S=(1+2)+(2^2+2^3)+(2^4+2^5)+(2^6+2^7)+(2^8+2^9)
=1.(1+2)+2^2.(1+2)+2^4.(1+2)+2^6.(1+2)+2^8.(1+2)
=1.3+2^2.3+2^4.3+2^6.3+2^8.3
=3.(1+2^2+2^4+2^6+2^8) chia hết cho 3
S=1+2+2^2+2^3+2^4+2^5+2^6+2^7
S= (1+2) + (2^2+2^3) + (2^4+2^5) + (2^6+2^7)
S=3 + 3.4 + 3.16 + 3.64
S=255
Vì 255 chia hết cho 3
=> S sẽ chia hết cho 3
Người lạ ơi bố thí cho tôi ^_^
1/ ta có :
11.12.13+ 114.115.116+ 1117.1118.1119= 11.3.4.13+ 3.38.115.116+ 1117.1118.3.373
= 3(11.4.13+ 38.115.116+ 1117.1118.373 ) chia hết cho 3 => đpcm
2/ a)(mik nghĩ là bn nhầm, nếu 7^2 +...+ 7^60 chia hết cho 8 thì chắc chắn là sai hoàn toàn, nên mik sửa đề) ta có :
S = \(7+7^2+7^3+7^4+7^5+...+7^{59}+7^{60}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)+...+\left(7^{59}.7^{60}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{59}\left(1+7\right)\)
\(=7.8+7^3.8+...+7^{59}.8\)
\(=8\left(7+7^3+...+7^{59}\right)⋮8\)(đpcm)
b) \(A=a+a^2+a^3+a^4+...+a^{23}+a^{24}\)
\(=\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{23}+a^{24}\right)\)
\(=a\left(1+a\right)+a^3\left(1+a\right)+...+a^{23}\left(1+a\right)\)
\(=\left(1+a\right)\left(a+a^3+...+a^{23}\right)⋮\left(a+1\right)\)(đpcm)
Nhớ kb với mik nha!
\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(3S=3+3^2+3^3+...+3^{10}\\ \Rightarrow3S-S=3+3^2+...+3^{10}-1-3-3^2-...-3^9\\ \Rightarrow2S=3^{10}-1\\ \Rightarrow S=\dfrac{3^{10}-1}{2}\)
Ta có \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^8+3^9\right)\)
\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)\\ S=\left(1+3\right)\left(1+3^2+...+3^8\right)=4\left(1+3^2+...+3^8\right)⋮4\)
a) S=1+2+4+8+...+512
=(1+2)+(4+8)+...+(508+512)
=(3+12+....+1020) chia hết cho 3
b S=1+2+4+8+..+512
số số hạng là:
2+(512-4):4+1=2+129=131(số hạng)
tổng là :
3+(512+4):2.129=33285
\(S=2+2.2^2+3.2^3+...+2016.2^{2016}\)
\(2S=2^2+2.2^3+3.2^4+...+2016.2^{2017}\)
\(2S-S=S=\text{}\text{}\text{}\text{}2^2+2.2^3+3.2^4+...+2016.2^{2017}-2-2.2^2-3.2^3-...-2016.2^{2016}\)
\(S=2\left(0-1\right)+2^2\left(1-2\right)+2^3\left(2-3\right)+...+2^{2016}\left(2015-2016\right)+2^{2017}.2016\)
\(S=-\left(2+2^2+2^3+...+2^{2016}\right)+2^{2017}.2016\)
\(\)Đặt \(A=2+2^2+2^3+...+2^{2016}\)
\(2A=2^2+2^3+2^4+...+2^{2017}\)
\(2A-A=A=2^2+2^3+2^4+...+2^{2017}-2-2^2-2^3-...-2^{2016}\)
\(A=2^{2017}-2\)
Thay vào S ta được:
\(S=-2^{2017}+2+2^{2017}.2016\)
\(S=2^{2017}.2015+2\)
Ta có \(S+2013=2^{2017}.2015+2+2013\)
\(S+2013=2^{2017}.2015+2015\)
\(S+2013=2015\left(2^{2017}+1\right)\)
Suy ra \(S+2013⋮2^{2017}+1\)
Vậy \(S+2013⋮2^{2017}+1\) (đpcm)