Phân tích đa thức thành nhân tử
(X + 1)(2x-2) - (x +3)(x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-x+2\right)\left(x-1\right)-x^2\left(x-1\right)^2+\left(2x+1\right)\left(x-1\right)^3\)
\(=\left(x-1\right)\left[x^2-x+2-x^2\left(x-1\right)+\left(2x+1\right)\left(x^2-2x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2-x+2-x^3+x^2+2x^3-4x^2+2x+x^2-2x+1\right)\)
\(=\left(x-1\right)\left(x^3-x^2-x+3\right)\)
\(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)
\(=x^3+x^2+x^2+x+x+1=x^2\left(x+1\right)+x\left(x+1\right)+x+1\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
x3 + 2x2 + 2x + 1
= (x3 + 1) + (2x2 + 2x)
= (x + 1)(x2 + x + 1) + 2x(x + 1)
= (x + 1)(x2 + x + 1 + 2x)
= (x + 1)(x2 + 3x + 1)
Chúc bạn học tốt
\(a)\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)
Để đơn giản hơn cũng như là dễ nhìn hơn thì ta :
Đặt : \(x^2+2x=a\)
Do đó ta có đa thức :
\(a.\left(a+4\right)+3=a^2+4a+3\)
\(=a^2+a+3a+3\)
\(=a\left(a+1\right)+3\left(a+1\right)\)
\(=\left(a+1\right)\left(a+3\right)\)
\(=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)
\(=\left(x+1\right)^2.\left(x^2+2x+3\right)\)
Hoặc bạn có thể đặt \(x^2+2x+2=t\)
Thì \(P=\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)
\(P=\left(t-2\right)\left(t+2\right)+3\)
\(P=t^2-4+3\)
\(P=t^2-1\)
\(P=\left(t-1\right)\left(t+1\right)\)
\(P=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)
\(P=\left(x+1\right)^2\left(x^2+2x+3\right)\)
\(x^4+2x^3+x^2+x+1=x^4+x^3+x^3+x^2+x+1=x^3\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+x^2+1\right)\)
\(x^4-5x^2+4=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
(2\(x\) - 1)2 - (3\(x\))2
= (2\(x\) - 1 - 3\(x\)).( 2\(x\) - 1+ 3\(x\))
= (- \(x\) - 1).(5\(x\) - 1)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(\left(x+1\right)\left(2x-2\right)-\left(x+3\right)\left(x+1\right)\\ =\left(x+1\right)\left(2x-2-x-3\right)\\ =\left(x+1\right)\left(x-5\right)\)
`(x+1)(2x-2)-(x+3)(x+1)`
`=(x+1)[(2x-2)-(x+3)]`
`=(x+1)(2x-2-x-3)`
`=(x+1)(x-5)`