Phân tích đa thức thành nhân tử
16 - z^2 + 2xz - x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 2xz + z2 - y2
= ( x2 - 2xz + z2 ) - y2
= ( x - z )2 - y2
= [ ( x - z ) - y ] . [ ( x - z ) + y ]
= ( x - z - y ) . ( x - z + y )
HT
x2 + 2xy - 8y2 + 2xz + 14yz - 3z2
= ( x2 + y2 +z2 + 2xy + 2yz ) + ( -9x2 + 12yz - 4x2 )
= ( x + y +z )2 - [ (3x)2 - 2.3.x.2y + ( 2x)2
= ( x + y +z )2 - ( 3y - 2x)2
= ( x + y +z - 3y + 2x )(x+ y + z + 3y - 2x )
anh đi anh nhớ quê nha
nhớ canh rau muống nhớ cà dầm tương
nhớ thằng đẩy bố xuống mương
bố mà bắt được bố tương vỡ mồm
x2+2xz+2xy+4yz
= ( x2+2xz ) + ( 2xy + 4yz )
= x( x + 2z ) + 2y( x +2z )
= (x+2z)(x+2y)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(x^2-y^2+z^2-t^2-2xz+2yt=\)
\(=\left(x^2-2xz+z^2\right)-\left(y^2-2yt+t^2\right)=\)
\(=\left(x-z\right)^2-\left(y-t\right)^2=\)
\(=\left[\left(x-z\right)-\left(y-t\right)\right]\left[\left(x-z\right)+\left(y-t\right)\right]\)
\(x^2-y^2+z^2-t^2-2xz+2yt\)
\(=\left(x^2-2xz+z^2\right)-\left(y^2+2yt+t^2\right)\)
\(=\left(x-z\right)^2-\left(y-t\right)^2\)
\(=\left(x-z+y-t\right)\times\left(x-z-y+t\right)\)
\(=x\left(y^2-4\right)+xz\left(y+2\right)\)
\(=x\left(y+2\right)\left(y-2\right)+x\left(y+2\right)z\)
\(=x\left(y+2\right)\left(y-2+z\right)\)
\(xy^2-4x+xyz+2xz\)
\(=x\left(y-2\right)\left(y+2\right)+zx\left(y+2\right)\)
\(=x\left(y+2\right)\left(y-2+z\right)\)
\(16-z^2+2xz-x^2\\ =16-\left(z^2-2xz+x^2\right)\\ =4^2-\left(z-x\right)^2\\ =\left(4-z+x\right)\left(4+z-x\right)\)
16 − z² + 2xz − x²
= 4² − (z² − 2xz + x²)
= 4² − (z − x)²
= (4 − z + x)(4 + z − x)