Cho n là số tự nhiên . Chứng tỏ
a) n(n+1)(n+2) là bội của 2 và 3
b) n(n+1)(2n+1)là bội của 2 và 3
GIÚP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Để A chia hết có 2 :
TH1 : n chẵn => A chia hết cho 2
TH2 n lẻ => n + 1 chẵn => A chia hết cho 2 .
- Để A chia hết cho 3 :
TH1 : n = 3k => A chia hết cho 3
TH2 : n = 3k + 1 => 2n + 1 = 6k + 3 chia hết cho 3 => A chia hết cho 3 .
TH3 : n = 3k + 2 => n + 1 = 3k + 3 chia hết cho 3 => A chia hết cho 3 .
=> A chia hết cho 2 và 3
=> A là bội của 2 và 3 .
ta có : A = n(n+1)(2n+1)
nếu n chia hết cho 2
suy ra n=2k
suy ra Achia hết cho 2
suy ra A là bội của 2
nếu n chia cho 2 dư 1
suy ra n=2k+1
suy ra n+1=2k+2chia hết cho 2
suy ra A chia hết cho 2
suy ra A là bội của 2
suy ra với n là stn thì A là bội của 2(1)
Lại có: nếu n chia hết cho 3
suy ra A chia hết cho 3
suy ra A là bội của 3
nếu n chia cho 3 dư 1
suy ra n=3k+1
suy ra 2n+1=6k+3chia hết cho 3
suy ra A chia hết cho 3
suy ra A là bội của 3
Nếu n chia cho 3 dư 2
suy ra n=3k+2
suy ra n+1=3k+3chia hết cho 3
suy ra A chia hết cho 3 suy ra A là bội của 3
suy ra n là stn thì A là bội của 3(2)
từ (1)và (2)suy ra nếu n là stn thì A là bội của 3 và 2
Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)
Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)
Từ (1),(2)(1),(2) có n⋮24n⋮24.
2n + 3 là bội của n - 2
2n +3 chia hết cho n-2
2n - 4 + 7 chia hết cho n - 2
n - 2 thuộc Ư(7)
=> n = 3;1; - 5 ; 9
mà n là số tự nhiên => n = 1;3;9
Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ
\(\Rightarrow2n+1=1\left(mod8\right)\)
=> n \(⋮\) 4
=> n chẵn
=> n+1 cũng là số lẻ
\(\Rightarrow n+1=1\left(mod8\right)\)
=> n \(⋮\) 8
Mặt khác :
\(3n+2=2\left(mod3\right)\)
\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)
Mà n+1 và 2n+1 là các số chính phương lẻ
\(\Rightarrow n+1=2n+1=1\left(mod3\right)\)
=> n chia hết cho 3
Mà ( 3 ; 8 ) = 1
=> n chia hết cho 24
Vì n + 1 và 2n + 1 đêu là phân số chính phương nên đặt n+1 = k\(^2\), 2n+1 = m\(^2\)( k, m \(\in\) N)
Ta có m là số lẻ => m = 2a+1 =>m\(^2\)= 4a(a+1)+1
=>n=\(\frac{m^2-1}{2}\)=\(\frac{4a\left(a+1\right)}{2}\)=2a(a+1)
=> n chẵn =>n+1 là số lẻ =>k lẻ =>Đặt k = 2b+1 (Với b \(\in\) N) =>k\(^2\)=4b(b+1)+1
=> n=4b(b+1) =>n \(⋮\)8 (1)
Ta có k\(^2\) + m\(^2\) =3n+2=2 ( mod3)
Mặt khác k\(^2\) chia 3 dư 0 hoặc 1 ,m\(^2\)chia 3 dư 0 hoặc 1
Nên để k\(^2\)+m\(^2\) =2 (mod3) thì k\(^2\) = 1(mod3)
m\(^2\) = 1 (mod3)
=>m\(^2\)-k\(^2\)\(⋮\)3 hay (2n+1)-(n+1) \(⋮\)3 =>n \(⋮\) 3
Mà (8;3)=1
Từ (1) ; (2) và (3) => n \(⋮\) 24
a, Ta thấy n;n+1;n+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 ; có 1 số chia hết cho 3
=> n.(n+1).(n+1) chia hết cho 2 và 3 hay n.(n+1).(n+2) là bội của 2 và 3
b, Ta thấy n;n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(2n+1) chia hết cho 2 hay n.(n+1).(2n+1)là bội của 2
+ Nếu n = 3k ( k thuộc N ) thì n.(n+1).(2n+1) chia hết cho 3(1)
+ Nếu n = 3k+1(k thuộc N) thì 2n+1 = 6n+3 = 3.(n+1) chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3 (2)
+ Nếu n = 3k+2 (k thuộc N ) thì n+1 = 3n+3 = 3.(n+1) chia hết cho 3 => n(.n+1).(2n+1) chia hết cho 3(3)
Từ (1);(2) và (3) => n.(n+1).(2n+1) chia hết cho 3 hay n.(n+1).(2n+1) là bội của 3
=> ĐPCM
a)ko biết
b)tự làm :>