Tìm các chữ số a,b sao cho 1a6b chia hết cho cả 2,3,5 và 9.
CÓ DẤU GẠCH NGANG NHA
CẢM ƠN !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1/
Không có giá trị * nào thỏa mãn 457* chia hét cho cả 2, 3, 5 và 9 vì:
- Để 457* chia hết cho 2 và 5 thì * phải bằng 0 (* phải cố định là 0)
- Mà 457* còn phải chia hết cho 3 và 9 mà số 4570 không chia hết cho 3 và 9
Vậy không có giá trị * thỏa mãn
B2/
a/ Để 3a78b chia hết cho 2 và 5 thì chữ số cuối phải bằng 0, tức b = 0
Để 3a780 chia hết cho 3 và 9 thì 3a780 phải chia hết cho 9
Mà 3 + a + 7 + 8 + 0 = 18 + a suy ra a = 0 hoặc a = 9
Vậy hai số tìm được là: 30780 hoặc 39780
b/ Để 4a5b chia hết cho 2 và 5 nên chữ số cuối tức b = 0
Để 4a50 chia hết cho 3 nhưng không chia hết cho 9 thì
4 + a + 5 + 0 = 9 + a chia hết cho 3 không chia hết cho 9
Suy ra a = 3 hoặc a = 6
Vậy hai số tìm được là 4350 hoặc 4650
a) Để: \(\overline{a785b}\) chia hết cho 5 thì: \(b\in\left\{0;5\right\}\)
TH1: số đó có dạng: \(\overline{a7850}\) mà số này chia 9 dư 2
Nên: \(\overline{a7848}\) chia hết cho 9 \(\Rightarrow a=36-7-8-4-8=9\)
TH2: số đó có dạng: \(\overline{a7855}\) mà số này chia 9 dư 2
Nên: \(\overline{a7853}\) chia hết cho 9 \(\Rightarrow a=27-7-8-5-3=4\)
Vậy các số (a;b) thỏa mãn là: \(\left(9;0\right);\left(4;5\right)\)
b) Để: \(A=\overline{a785b}\) là số chẵn thì \(b\in\left\{0;2;4;6;8\right\}\)
TH1: số đó có dạng \(\overline{a7850}\) mà số này chia hết cho 5 không dư 3 (loại TH1)
TH2: số đó có dạng \(\overline{a7852}\) mà số này chia cho 5 dư 3 \(\Rightarrow\overline{a7849}\) \(⋮̸\)5 (loại TH2)
TH3: số đó có dạng \(\overline{a7854}\) mà số này chia cho 5 dư 3 \(\Rightarrow\overline{a7851}\) \(⋮̸\)5 (loại TH3)
TH4: số đó có dạng \(\overline{a7856}\) mà số này chia cho 5 dư 3 \(\Rightarrow\overline{a7853}\) \(⋮̸\)5 (loại TH4)
TH5: số đó có dạng \(\overline{a7858}\) mà số này chia cho 5 dư 3 \(\Rightarrow\overline{a7855}\) ⋮ 5 (đúng)
Mà: số này chia hết cho 9 \(\Rightarrow a=36-7-8-5-8=8\)
Vậy cặp số (a;b) thỏa mãn là (8;8)
1879ab ÷45(a=2;b=0)
Vậy 187920÷45
=4176
87a9b ÷22(a=4;b=4)
Vậy 87494÷22
=3977
\(a)1879ab⋮45\)
\(\Rightarrow1879ab⋮5;1879ab⋮9\)
\(\Rightarrow b=0;5\)
\(b=0\Rightarrow1+8+7+9+a⋮9\)
\(\Rightarrow b=0;a=2\)
\(b=5\Rightarrow1+8+7+9+a+5⋮9\)
\(\Rightarrow b=0;a=6\)
Elsa ơi! Hình như bạn ghi sai đề rồi, làm gì có "d" nào để tìm đâu chứ!
Thay chữ số vào dấu * để:
a) 9* là số nguyên tố?
=>x=7
b) 9* là hợp số
=> * \(\in\)\(\varnothing\)
c) 15* chia hết cho 3
=> (1+5+*)\(⋮\)3
=>6+* \(⋮\)3
=> * \(\in\){0;3;6;9}
d) 25* chia hết cho 2 và 3
=> * là số chẵn thì mới chia hết cho 3
25* chia hết cho 3
=> (2+5+*) chia hết cho 3
=> 7+* chia hết cho 3
=> *\(\in\){2;5;8}
Mà * chẵn
=>*\(\in\){2;8}
e) 139* chia hết cho 5
=> * \(\in\){0;5}
f) *135 chia hết cho 9
=>(*+1+3+5) chia hết cho 9
=> *+9 chia hết cho 9
=> * \(\in\){0;9}
g) 7*52* chia hết cho cả 2,3,5 và 9( các dấu * trong cùng một số không nhất thiết phải điền các chữ số giống nhau)
+ 7*52* chia hết cho 2,5
=> *=0
Thay 7*52*=7*520 chia hết cho 3
=>( 7+*+5+2+0) chia hết cho 3
=>14+* chia hết cho 3
=> * \(\in\){ 1;4;7}
+ 7*520 chia hết cho 9
=>(7+*+5+2+0) chia hết cho 9
=>14+* chia hết cho 9
=> *=4
chúc bn học tốt
HOÀNG TÚ UYÊN ƠI CHO MÌNH HỎI TÍ :
Ở CÂU 2 TẠI SAO x CÓ THỂ LÀ 0 HOẶC 5 BẠN GIẢI THÍCH TÍ CHO MÌNH ĐƯỢC KO
a) Để \(\overline{163a}\) chia hết cho 5 thì \(a\in\left\{0;5\right\}\)
Mà số đó lại chia hết cho 3 nên: \(1+6+3+a=10+a\) ⋮ 3
Với a = 0 thì 10 + 0 = 10 không chia hết cho 3 (loại)
Với a = 5 thì 10 + 5 = 15 ⋮ 3 (nhận)
Vậy a = 5
b) Để \(\overline{712a4b}\) chia hết cho 2 và 5 thì \(b=0\)
Số đó có dạng \(\overline{712a40}\)
Mà số đó lại chia hết cho 3 và 9 nên: \(7+1+2+a+4+0=14+a\) ⋮ 9
\(14+a=18\Rightarrow a=4\)
Vậy (a;b) = (4;0)
\(\overline{9xy4}\)\(⋮\)\(2\)\(\Leftrightarrow x,y\in\left\{0;1;2;...;9\right\}\)
\(\overline{9xy4}\)\(⋮\)\(4\)\(\Leftrightarrow x\in\left\{0;1;2;...;9\right\}\)
\(y\in\left\{0;2;4;6;8\right\}\)
\(\overline{9xy4}\)\(⋮\)\(8\)\(\Leftrightarrow\)hoặc \(x\in\left\{0;2;4;6;8\right\}\)và \(y\in\left\{2;6\right\}\)
hoặc \(x\in\left\{1;3;5;7;9\right\}\)và \(y\in\left\{0;4;8\right\}\)
a=2
b=0
Để \(\overline{1a6b}⋮2,3,5,9\) thì \(\overline{b}=0\)
Ta có:
\(\overline{1a60}=\overline{1}+\overline{a}+\overline{6}+\overline{0}=\overline{7a}\)
Mà \(a\) là số có `1` chữ số
\(a\in\left\{2\right\}\)
\(\Rightarrow\overline{a}=\overline{2};\overline{b}=\overline{0}\)