K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

mình chỉ biết câu a thui nha thông cảm 

3S+2 =22017 

Vậy là chứng minh được rồi ^ ^

7 tháng 3 2018

Mình chỉ biết làm câu a thôi còn câu b bạn tự làm nhé

a) Ta có : \(S=2+2^3+2^5+2^7+.....+2^{2015}\)

                    \(\Rightarrow4S=2\cdot4+2^3\cdot4+2^5\cdot4+2^7\cdot4+...+2^{2015}\cdot4\)

                    \(\Leftrightarrow2^3+2^5+2^7+...+2^{2015}+2^{2017}\)

  Mà S = ( 4S - S) :3

                     \(\Rightarrow S=\left[\left(2^3+2^5+2^7+..+2^{2017}\right)-\left(2+2^3+2^5+2^7+...+2^{2015}\right)\right]:3\)

                               \(=\frac{\left(2^{2017}-2\right)}{3}\)

=> 3S + 2     \(=3\cdot\frac{2^{2017}-2}{3}+2\)

                     \(=\frac{3\left(2^{2017}-2\right)}{3}+2\)

                      \(=\frac{2^{2017}-2}{1}+2\)

                       \(=2^{2017}-2+2\)

                        \(=2^{2017}\)

  Mà 22017 là một lũy thừ của 2

=> 3S + 2 cũng là một lũy thừ của 2 (đpcm)

20 tháng 8 2023

\(S=1+4^2+4^3+...+4^{99}\)

\(\Rightarrow S+4=1+4+4^2+4^3+...+4^{99}\)

\(\Rightarrow S+4=\dfrac{4^{99+1}-1}{4-1}=\dfrac{4^{100}-1}{3}\)

\(\Rightarrow S=\dfrac{4^{100}-1}{3}-4=\dfrac{4^{100}-13}{3}\)

\(\Rightarrow3S+1=3.\dfrac{4^{100}-13}{3}+1\)

\(\Rightarrow3S+1=4^{100}-12\)

\(\Rightarrow3S+1=2^{200}-2^2.3>2^{100}\)

 mà \(32^{20}=\left(2^5\right)^{20}=2^{100}\)

\(\Rightarrow3S+1>32^{20}\)

11 tháng 11 2016

Ta có: A = 1 + 2 + 22 + 23 + ....... + 2200

=> 2A = 2 + 22 + 23 + ....... + 2201

=> 2A - A = ( 2 + 22 + 23 + ....... + 2201 ) - ( 1 + 2 + 22 + 23 + ....... + 2200 ) 

=>        A = 2201 - 1 

=>  A + 1 = 2201

11 tháng 11 2016

A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200

2A = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201

2A - A = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201 )

           -  ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200 )

A         = 2 ^ 201 - 1

=> A + 1 = 2 ^ 201

B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005

3B = 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006

3B - B = ( 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006 )

            - ( 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005 )

2B      = 3 ^ 2006 - 3

=> 2B = 3 ^ 2006

Vậy 2B + 3 là lũy thừa của 3

25 tháng 7 2017

Câu 1: 3^23  >    5^12

4 tháng 1 2018

Câu 2: 3^36 < 2^8.11^4

9 tháng 8 2017

1. A = 1 + 2 + 22 + ... + 2200
=> 2A = 2 + 22 + ... + 2200 + 2201
=> 2A - A = 2201 - 1
=> A = 2201 - 1
=> A + 1 = 2201 - 1 + 1 = 2201
2. B = 3 + 32 + 33 + ... + 32005
=> 3B = 32 + 33 + ... + 32005 + 32006
=> 3B - B = 32006 - 3
=> 2B = 32006 - 3
=> 2B + 3 = 32006 - 3 + 3 = 32006 (là lũy thừa của 3)
=> đpcm
@hanie anh

NV
25 tháng 12 2022

Ta có: \(64^{12}=\left(4^3\right)^{12}=4^{36}\)

\(S=4^0+4^1+...+4^{34}+4^{35}\)

\(\Rightarrow4S=4^1+4^2+...+4^{35}+4^{36}\)

\(\Rightarrow4S-S=4^{36}-4^0\)

\(\Rightarrow3S=4^{36}-1< 4^{36}\)

Vậy \(3S< 64^{12}\)

25 tháng 12 2022

\(4^0+4^1+4^2+4^3+...+4^{35}\\ 4S=4^1+4^2+4^3+4^4+...+4^{36}\\ 4S-S=\left(4^1+4^2+4^3+4^4+...+4^{36}\right)-\left(4^0+4^1+4^2+4^3+...+4^{35}\right)\\ 3S=4^{36}-1=64^{12}-1\\ Vì64^{12}-1< 64^{12}\\ \Rightarrow3S< 64^{12}\)

9 tháng 3 2016

ta có 3S = 1*2*3 + 2*3*3 +3*4*3 + ......+n*(n+1)*3

       3S = 1*2*3  + 2*3*(4-1) + 3*4*(5-2) + ......+n*(n+1)*(n+2-n+1)

       3S = 1*2*3 + 2*3*4 - 1*2*3 + 3*4*5 - 2*3*4 + .....+n*(n+1)*(n+2) - (n-1)*n*(n+1)
       3S = (n-1)*n*(n+1)

23 tháng 1 2017

Học Sinh Giỏi À bạn ?

23 tháng 1 2017

Bạn Thi Học Sinh Giởi À 

12 tháng 10 2021

So sánh:

a) 5^300 và 3^500

b) (-16)^11 và (-32)^9

c) (2^2)^3 và 2^2^3

d) 2^30 + 2^30 + 4^30 và 3^20 + 6^20 + 8^20

e) 4^30 và 3×24^10

g) 2^0 + 2^1 + 2^2 + 2^3 +...+ 2^50 và 2^51

4 tháng 10 2022

ai bt tự làm

 

15 tháng 4 2023

ngu tự chịu