Tìm x sao cho P nguyên
\(P=\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;1\right\}\end{matrix}\right.\)
Ta có: \(A=\dfrac{x-4\sqrt{x}+3-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2x-4\sqrt{x}+5-2x+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)
\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)
b: Để A>2 thì A-2>0
=>\(\dfrac{1-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)
=>\(\dfrac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)
=>\(\dfrac{2\sqrt{x}-5}{\sqrt{x}-2}< 0\)
TH1: \(\left\{{}\begin{matrix}2\sqrt{x}-5>0\\\sqrt{x}-2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}>\dfrac{5}{2}\\\sqrt{x}< 2\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}2\sqrt{x}-5< 0\\\sqrt{x}-2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}< \dfrac{5}{2}\\\sqrt{x}>2\end{matrix}\right.\)
=>\(2< \sqrt{x}< \dfrac{5}{2}\)
=>4<x<25/4
c: Để A là số nguyên thì \(1⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)
=>\(\sqrt{x}\in\left\{3;1\right\}\)
=>\(x\in\left\{1;9\right\}\)
kết hợp ĐKXĐ, ta được: x=9
a: ĐKXĐ: x>0; x<>1
b: \(A=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{x-1}\)
c: A nguyên
=>x-1 thuộc {1;-1;2;-2}
=>x thuộc {2;3}
1) Ta có: \(P=\dfrac{1}{\sqrt{x}-1}-\dfrac{x\sqrt{x}-\sqrt{x}}{x+1}\left(\dfrac{1}{x-2\sqrt{x}+1}+\dfrac{1}{1-x}\right)\)
\(=\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(x-1\right)}{x+1}\cdot\left(\dfrac{\sqrt{x}+1-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x+1}\cdot\dfrac{2}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
\(=\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{x+1}\)
Để \(P=-\dfrac{2}{5}\) thì \(\dfrac{\sqrt{x}-1}{x+1}=\dfrac{-2}{5}\)
\(\Leftrightarrow-2x-2=5\sqrt{x}-5\)
\(\Leftrightarrow-2x-2-5\sqrt{x}+5=0\)
\(\Leftrightarrow-2x-5\sqrt{x}+3=0\)
\(\Leftrightarrow-2x-6\sqrt{x}+\sqrt{x}+3=0\)
\(\Leftrightarrow-2\sqrt{x}\left(\sqrt{x}+3\right)+\left(\sqrt{x}+3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(-2\sqrt{x}+1\right)=0\)
\(\Leftrightarrow-2\sqrt{x}+1=0\)
\(\Leftrightarrow-2\sqrt{x}=-1\)
\(\Leftrightarrow x=\dfrac{1}{4}\)(thỏa ĐK)
a) Vì \(x=\dfrac{1}{4}\) thỏa mãn ĐKXĐ
nên Thay \(x=\dfrac{1}{4}\) vào biểu thức \(A=\dfrac{x-4}{\sqrt{x}+2}\), ta được:
\(A=\dfrac{\dfrac{1}{4}-4}{\sqrt{\dfrac{1}{4}}+2}=\left(\dfrac{1}{4}-\dfrac{16}{4}\right):\left(\dfrac{1}{2}+2\right)=\dfrac{-15}{4}:\dfrac{5}{2}\)
\(\Leftrightarrow A=\dfrac{-15}{4}\cdot\dfrac{2}{5}=\dfrac{-30}{20}=\dfrac{-3}{2}\)
Vậy: Khi \(x=\dfrac{1}{4}\) thì \(A=\dfrac{-3}{2}\)
b) Ta có: \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-1}{2-\sqrt{x}}-\dfrac{9-x}{4-x}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{9-x}{x-4}\)
\(=\dfrac{x-2\sqrt{x}+\sqrt{x}-2+x+2\sqrt{x}-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2x-4+9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
Thay x = \(\dfrac{1}{4}\)vào bt A ta có: A= \(\dfrac{\dfrac{1}{4}-4}{\sqrt{\dfrac{1}{4}}+2}=\dfrac{-15}{4}:\dfrac{5}{2}=\dfrac{-3}{2}\)
Vậy x = \(\dfrac{1}{4}\)vào bt A nhận giá trị là -3/2
b)
Ta có: \(P=A\cdot B\) (ĐK: \(x>0;x\ne4\))
\(=\left(\dfrac{3\sqrt{x}-6}{x-2\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}-\dfrac{1}{2-\sqrt{x}}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\left[\dfrac{3\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right]\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\left(\dfrac{3+\sqrt{x}-3}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\left(1+\dfrac{1}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\right)\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+9}\)
Với x > 0; x ≠ 4 thì \(\sqrt{P}< \dfrac{1}{3}\Leftrightarrow P< \dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+9}< \dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+9}-\dfrac{1}{9}< 0\)
\(\Leftrightarrow\dfrac{9\left(\sqrt{x}-1\right)}{9\left(\sqrt{x}+9\right)}-\dfrac{\sqrt{x}+9}{9\left(\sqrt{x}+9\right)}< 0\)
\(\Leftrightarrow\dfrac{9\sqrt{x}-9-\sqrt{x}-9}{9\sqrt{x}+81}< 0\)
\(\Leftrightarrow\dfrac{8\sqrt{x}-18}{9\sqrt{x}+18}< 0\)
Ta thấy: \(9\sqrt{x}+18>0\forall x\)
\(\Rightarrow8\sqrt{x}-18< 0\)
\(\Rightarrow\sqrt{x}< \dfrac{18}{8}\)
\(\Rightarrow\sqrt{x}< \dfrac{9}{4}\Leftrightarrow x< \dfrac{81}{16}\)
Kết hợp với điều kiện, ta được: \(0< x\le5\)\(;x\ne4\)
\(\Rightarrow x\in\left\{1;2;3;5\right\};x\in Z\) thì \(\sqrt{P}< \dfrac{1}{3}\)
#Urushi
Lời giải:ĐK: $x>0; x\neq 1$;
\(P=\left[\frac{(\sqrt{x}-1)(x+\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}-\frac{(\sqrt{x}+1)(x-\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}+1)}\right]:\frac{2(\sqrt{x}-1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(=\left(\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\right):\frac{2(\sqrt{x}-1)}{\sqrt{x}+1}\)
\(=2:\frac{2(\sqrt{x}-1)}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\). Để $P$ nguyên thì $\sqrt{x}-1$ là ước nguyên của $2$
$\Rightarrow \sqrt{x}-1\in\left\{\pm 1;\pm 2\right\}$
$\Rightarrow x\in\left\{0; 2; 9\right\}$
Kết hợp với ĐKXĐ suy ra $x\in\left\{2;9\right\}$