với x>0, \(x\ne1\),tìm min \(\sqrt{P}\)biết:
\(P=\dfrac{x}{\sqrt{x}-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{P}=\sqrt{\frac{x}{\sqrt{x}+1}}=\sqrt{\frac{x-1+1}{\sqrt{x}+1}}\)
= \(\sqrt{\sqrt{x}-1+\frac{1}{\sqrt{x}+1}}\)
= \(\sqrt{\sqrt{x}+1+\frac{1}{\sqrt{x}+1}-2}\ge2-2=0\)
Vậy GTNN là 0 đạt được khi x = 0
a,\(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(P=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\)
Vậy \(P=\dfrac{2}{x+\sqrt{x}+1}\)
b, Ta có \(x+\sqrt{x}+1=\left(x+2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)Suy ra \(\dfrac{2}{x+\sqrt{x}+1}>0\forall x>0,x\ne1\)
hay \(P>0\forall x>0,x\ne1\)(đpcm)
\(A=\left(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\cdot2}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Với \(x>0;x\ne1\), ta có:
\(P=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\left[\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}+2}\right].\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\left[\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right].\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
Vậy với \(x>0,x\ne1\)thì \(P=\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(\Rightarrow2P=\frac{2\sqrt{x}+2}{\sqrt{x}}\)
\(2P=2\sqrt{x}+5\Leftrightarrow\frac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+5\left(ĐKXĐ:x\ne0\right)\left(1\right)\)
Mà theo đề bài : \(x>0\)nên phương trình luôn được xác định.
\(\left(1\right)\Leftrightarrow\frac{2\sqrt{x}+2}{\sqrt{x}}=\frac{\sqrt{x}\left(2\sqrt{x}+5\right)}{\sqrt{x}}\)
\(\Rightarrow2\sqrt{x}+2=\sqrt{x}\left(2\sqrt{x}+5\right)\)
\(\Leftrightarrow2\sqrt{x}+2=2x+5\sqrt{x}\)
\(\Leftrightarrow2\sqrt{x}+2-2x-5\sqrt{x}\)
\(\Leftrightarrow-2x-3\sqrt{x}+2=0\Leftrightarrow2x+3\sqrt{x}-2=0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2\sqrt{x}-1=0\\\sqrt{x}+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2\sqrt{x}=1\\\sqrt{x}=-2\left(vn\right)\end{cases}}\Leftrightarrow2\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\left(TMĐK:x>0;x\ne1\right)\)
Vậy \(2P=2\sqrt{x}+5\Leftrightarrow x=\frac{1}{4}\)
a: \(S=\dfrac{\sqrt{x}-1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-4-x+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{-3}\)
\(=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b: Để S=0 thì \(\sqrt{x}-2=0\)
hay x=4(loại)
\(a,P=A:B=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x-1\right)}=\dfrac{x-1}{\sqrt{x}}\\ b,P\sqrt{x}=m+\sqrt{x}\\ \Leftrightarrow x-1=m+\sqrt{x}\\ \Leftrightarrow x-\sqrt{x}-m-1=0\)
Để tồn tại x thì PT phải có nghiệm hay \(\Delta=1-4\left(-m-1\right)\ge0\)
\(\Leftrightarrow4m+5\ge0\\ \Leftrightarrow m\ge-\dfrac{5}{4}\)
\(=>Q=\dfrac{2}{\dfrac{x-\sqrt{x}+1}{\sqrt{x}}}=\dfrac{2}{\sqrt{x}-1+\dfrac{1}{\sqrt{x}}}\)
Q nguyên \(< =>\sqrt{x}+\dfrac{1}{\sqrt{x}}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
đặt \(\sqrt{x}+\dfrac{1}{\sqrt{x}}=t\left(t>0\right)=>t-1\inƯ\left(2\right)=>t\in\left\{2;0;3;-1\right\}\)
\(=>t\in\left\{2;0;3\right\}=>\sqrt{x}+\dfrac{1}{\sqrt{x}}\in\left\{2;0;3\right\}\)
\(=>x\in\left\{1;\right\}\)(loại ) vậy\(x\in\varnothing\)
(không chắc)