K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

Bạn ơi đề bài thiếu điều kiện a thuộc Z kìa

A = a.(a^2 - 1) = (a-1).a.(a+1)

Ta thấy a-1;a;a+1 là 3 số nguyên liên tiếp nên có ít nhất 1 số chia hết cho 2 và 1 số chia hết cho 3

=> (a-1).a.(a+1) chia hết cho 6 [ vì (2;3)=1 ]

7 tháng 11 2017

ta có: \(a^3+b^3+c^3-\left(a+b+c\right)=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right).\)

                                                                     \(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\) (*)

mà \(a\left(a-1\right)\left(a+1\right)\) là tích 3 số liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

=> \(a\left(a-1\right)\left(a+1\right)⋮6\)

tương tự :  \(b\left(b-1\right)\left(b+1\right)⋮6\)

    \(c\left(c-1\right)\left(c+1\right)⋮6\)

=> (*) chia hếtcho 6

\(\Leftrightarrow a^3+b^3+c^3-\left(a+b+c\right)\) chia hết cho 6

mà theo bài ra ta có: \(a+b+c⋮6\)

nên  \(a^3+b^3+c^3⋮6\) => đpcm

14 tháng 8 2017

Ta có: \(a^3-19a=a^3-a-18a=a\left(a^2-1\right)-18a\)

\(=a\left(a-1\right)\left(a+1\right)-18a\)

Ta thấy a; a - 1; a + 1 là tích của 3 số tự nhiên liên tiếp; mà tích của ba số tự nhiên liên tiếp luôn chia hết cho 6 \(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮6\).

Ngoài ra; 18a cũng chia hết cho 6 \(\Rightarrow a^3-19a⋮6\)

20 tháng 1 2021

\(19a+\dfrac{7}{a}>\dfrac{178}{3}\)

\(\Leftrightarrow\dfrac{19a^2+7}{a}>\dfrac{178}{3}\)

\(\Leftrightarrow57a^2+21>178a\)

\(\Leftrightarrow57a^2-178a+21>0\)

\(\Leftrightarrow\left(a-3\right)\left(57a-7\right)>0\)

\(\Leftrightarrow a>3\) đúng theo giả thiết

\(\Rightarrowđpcm\)

DD
7 tháng 9 2021

\(C=1+3^1+3^2+...+3^{99}\)

\(=\left(1+3^1\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)

\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{98}\left(1+3\right)\)

\(=4\left(1+3^2+...+3^{98}\right)\)chia hết cho \(4\).

\(C=1+3^1+3^2+...+3^{99}\)

\(=\left(1+3^1+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)

\(=\left(1+3^1+3^2+3^3\right)+...+3^{96}\left(1+3^1+3^2+3^3\right)\)

\(=40\left(1+3^4+...+3^{96}\right)\)chia hết cho \(40\).

27 tháng 12 2015

câu 1 bạn phân tích ra là a(a+1)(a+2)(a+3) là 4 số tự nhiên liên tiếp nên chia hết cho 24.

câu 2 bạn phân tích ra thành (a-2)(a-1)a(a+1)(a+2) là 5 số tự nhiên liên tiếp nên chia hết cho 120

bài 3 phân tích ra thành:(a-2)(a-1)a(3a-5) nhưng mình k biết nó chia hết cho 24 ở chỗ nào

 

 

28 tháng 9 2017

Áp dụng bổ đề:

\(x^3+y^3\ge xy\left(x+y\right)\)

Ta có:

\(\dfrac{19b^3-a^3}{ab+5b^2}+\dfrac{19c^3-b^3}{bc+5c^2}+\dfrac{19a^3-c^3}{ac+5a^2}\)

\(\le\dfrac{20b^3-ab\left(a+b\right)}{ab+5b^2}+\dfrac{20c^3-bc\left(b+c\right)}{bc+5c^2}+\dfrac{20a^3-ca\left(c+a\right)}{ac+5a^2}\)

\(=\dfrac{b\left(4b-a\right)\left(5b+a\right)}{ab+5b^2}+\dfrac{c\left(4c-b\right)\left(5c+b\right)}{bc+5c^2}+\dfrac{a\left(4a-c\right)\left(5a+c\right)}{ac+5a^2}\)

\(=4b-a+4c-b+4a-c=3\left(a+b+c\right)\)

28 tháng 9 2017

Pls tìm trước khi hỏi $$\dfrac{19b^3-a^3}{ab+5^2}+\dfrac{19c^3-b^3}{bc+5c^2}+\dfrac ...

Cho a,b,c>0.Cm:(19b^3-a^3)/(ab+5b^2)+ - Trường Toán Pitago – Hướng dẫn ...

C/m bất đẳng thức khó cho hsg

C/m bất đẳng thức khó cho hsg | Diễn đàn HOCMAI - Cộng đồng học tập ...

Cho a,b,c >0 và a+b+c=1.CMR (19b^3-a^3)/(ba+5b^2)+(19c^3-b^3)/(cb ...

Câu hỏi của Anh đẹp traiii - Toán lớp 9 - Học toán với OnlineMath

Học tại nhà - Toán - Chứng minh đẳng thức

Bất đẳng thức - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ ...

Bất đẳng thức

Đề thi HSG 12 THPT An Lão, Hải Phòng - Diễn Đàn MathScope

giúp tớ bài toán Cm 9 này với! hu hu!? | Yahoo Hỏi & Đáp

VMF,HMF,k2pi, mathscope,... đủ cả

3 tháng 2 2018

Chuẩn hóa: a+b+c=3k

\(\Rightarrow\)\(\dfrac{a}{k}+\dfrac{b}{k}+\dfrac{c}{k}=3\)

Đặt (\(\dfrac{a}{k};\dfrac{b}{k};\dfrac{c}{k}\))\(\Rightarrow\left(x;y;z\right)\);x+y+z=3

ĐPCM\(\Leftrightarrow\)\(\sum\dfrac{19y^3-x^3}{xy+5y^2}\le3\left(x+y+z\right)\)

Ta CM BĐT:

\(\dfrac{19y^3-x^3}{xy+5y^2}\le4y-x\Leftrightarrow-\dfrac{\left(y-x\right)^2\left(x+y\right)}{xy+5y^2}\le0\)(đúng)

CMTT\(\Rightarrow\)ĐPCM