K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

Ta biết rằng số chính phương lẻ chia cho 4 dư 1, chia cho 8 dư 1. Số chính phương chẵn thì chia hết cho 4

Vì tổng x^2+y^2+z^2 là số lẻ. Do đó trong ba số x^2;y^2;z^2phải có 1 số lẻ hai số chẵn hoặc cả ba số đều lẻ

- Trường hợp có 2 số chẵn, 1 số lẻ thì x^2+y^2+z^2 chia cho 4 dư 1. Còn 2015 chia cho 4 dư 3

- Trường hợp cả ba số đầu lẻ thì x^2+y^2+z^2 chia cho 8 dư 3. Còn 2015 chia cho 8 dư 7

Vậy phương trình không có nghiệm nguyên

20 tháng 12 2018

1) Áp dụng tích chất dãy tỉ số bằng nhau ta có:

\(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y-x+y}{2015-2017}=\frac{2y}{-2}\)

\(=-y\)

\(\Rightarrow xy=-2016y;x+y=-2015y;\)

\(x-y=-2017y\)

\(\Rightarrow-2016y-xy=0\)

\(\Rightarrow y\left(-2016-x\right)=0\)

\(\Rightarrow\orbr{\orbr{\begin{cases}y=0\\-2016-x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}y=0\\x=-2016\end{cases}}\)

\(+) \)\(y=0\Rightarrow0+x=-2015.0=0\Rightarrow x=0\)

\(+) \)\(x=-2016\Rightarrow-2016-y=-2017y\Rightarrow-2016\)

Vậy +) x=y=0

       +) x=-2016;y=1

20 tháng 12 2018

2) Có: \(\frac{2x+2}{3}=\frac{x+1}{1,5};\frac{4z+2}{5}=\frac{z+0,5}{1,25};\frac{3y-1}{4}=\frac{y-\frac{1}{3}}{\frac{4}{3}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x+1}{1,5}=\frac{y-\frac{1}{3}}{\frac{4}{3}}=\frac{z+0,5}{1,25}=\frac{x+y+z+\left(1-\frac{1}{3}+0,5\right)}{1,5+\frac{4}{3}+1,25}=\frac{7+\frac{7}{6}}{\frac{49}{12}}=2\)

Suy ra: \(x+1=2.1,5=3\Rightarrow x=2\)

             \(y-\frac{1}{3}=2.\frac{4}{3}=\frac{8}{3}\Rightarrow y=3\)

            \(z+0,5=2.1,25=2,5\Rightarrow z=2\)

Vậy x=2;y=3;z=2.

27 tháng 2 2016

Vậy x(x + y + z) + y(x + y+ z) + z(x + y + z) = 2 + 25 - 2 = 25

(x + y + z)(x + y + z) = 25

(x + y  + z) = 52 = (-5) 2

Bạn tự liệt kê x;y;z ra nha!

27 tháng 2 2016

Ta có : x (x + y + z) = 2      (1)

             y (x + y + z) = 25    (2)

             z (x + y + z) = -2      (3)

=> x (x + y + z) + y (x + y + z) + z (x + y + z) = 2 + 25 + (-2)

=> (x + y + z) (x + y + z) = 25

=> (x + y + z)2 = 52  = (-5)2

* Nếu (x + y + z)2 = 52 => x + y + z = 5       (4)

Từ (1) và (4) => x . 5 = 2 => x = 2/5 (thỏa mãn x > 0)

Từ (2) và (4) => y . 5 = 25 => y = 5

Từ (30 và (4) => z . 5 = -2 => z = -2/5

* Nếu (x + y + z)2 = (-5)2 => x + y + z = -5     (5)

Từ (1) và (5) => x . (-5) = 2 => x = -2/5 (ko thỏa mãn x > 0)

Vậy x = 2/5 ; y = 5 ; z = -2/5 thì thỏa mãn đề bài