Cho tam giác ABC cân tại A có A=80 độ. Lấy điểm E thuộc AB, F thuộc AC sao cho AE=AF
a)CMR tam giác AEF cân tại A
b) Tính số đo góc AEF và góc AFE
c)CMR: EF//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: Tính BC
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+12^2=169\)
=>\(BC=\sqrt{169}=13\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
Do đó: ΔABC=ΔABD
c: Ta có: ΔABC=ΔABD
=>\(\widehat{ABC}=\widehat{ABD}\)
Xét ΔBEA vuông tại E và ΔBFA vuông tại F có
BA chung
\(\widehat{EBA}=\widehat{FBA}\)
Do đó: ΔBEA=ΔBFA
=>AE=AF
=>ΔAEF cân tại A
a, xét tam giác ABH và tam giác ACH có AH chung
góc AHC = góc AHB = 90
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác ABH = tam giác ACH (ch-cgv)
b, ta giác ABH = tam giác ACH (câu a)
=> HB = HC (đn)
xét tam giác BHF và tam giác CHE có : góc BFH = góc CEH = 90
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> tam giác BHF = tam giác CHE (ch-gn)
=> BF = CE (đn)
AB = AC (câu a)
BF + FA = AB
CE + AE = AC
=> FA = AE
=> tam giác AFE cân tại A (đn)
c, tam giác AFE cân tại A (Câu b)
=> góc AFE = (180 - góc BAC) : 2 (tc)
tam giác ABC cân tại A (gt) => góc ABC = (180 - góc BAC) : 2 (tc)
=> góc AFE = góc ABC mà 2 góc này đồng vị
=> FE // BC (định lí)
a: XétΔBEC vuông tại E và ΔCFB vuông tại F có
BC chung
\(\widehat{EBC}=\widehat{FCB}\)
Do đó: ΔBEC=ΔCFB
b: Xét ΔAEF có AE=AF
nên ΔAEF cân tại A
c: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
d: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔHBC cân tại H
=>HB=HC
hay H nằm trên đường trung trực của BC(1)
Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là trung trực của BC(2)
Từ (1) và (2) suy ra A,H,M thẳng hàng
XÉT TAM GIÁC ABN VÀ TAM GIÁC ACN CÓ
AB=AC (GT)
GÓC ANB = GÓC ANC
AM CHÙN
=> TM GIÁC ABN = TAM GIÁC ACN (CGC)
B,THEO ĐỀ BÀI TA CÓ AE=AF=
=> TAM GIÁC AEF CÂN TẠI A
XÉT TAM GIÁC AME VÀ TAM GIÁC ÀM CÓ
GÓC E= GÓC F =90*
AM CẠNH HUYỀN CHUNG
AE=AF
=>TAM GIÁC AEN = TAM GIÁC ÀN (CH GN)
a: Xét ΔAEF có AE=AF
nên ΔAEF cân tại A
b: ΔAEF cân tại A
=>\(\widehat{AEF}=\widehat{AFE}=\dfrac{180^0-\widehat{FAE}}{2}=\dfrac{180^0-80^0}{2}=50^0\)
c: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
nên EF//BC