Tính bằng cách hợp lí
(1/4 -1) x (1/9 -1) x (1/16 -1) x ............ x (1/841 -1) x (1/900 -1) = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có: }\) \(\frac{1}{4}x+\frac{1}{8}x+\frac{1}{16}x=1\)
\(\Rightarrow\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)x=1\)
\(\Rightarrow\frac{7}{16}x=1\)
\(\Rightarrow x=1:\frac{7}{16}\)
\(\Rightarrow x=\frac{16}{7}\)
Tìm x :
a, 1/4 * x + 1/8 * x + 1/16 * x = 1
x * ( 1/4 + 1/8 + 1/16 ) = 1
x * 7/16 = 1
x = 1 : 7/16
x = 16/7
b, 1/5 + 1/3 x ( x + 1 ) = 1/4
1/3 x ( x + 1 ) = 1/4 - 1/5
1/3 x ( x + 1 ) = 1/20
x + 1 = 1/20 : 1/3
x + 1 = 3/20
x = 1 - 3/20
x = 7/20
Tính nhanh :
1/5 x 27 + 1/5 x 33 + 1/5 x 40
= 1/5 x ( 27 + 33 + 40 )
= 1/5 x 100
= 20
= 1/2+ (1/2-1/3)+(1/3-1/4)+...+(1/99-1/100)
= 1/2 -1/100
= 49/100
ko chắc chắn, đúng k mk nha
a,\(\frac{1}{5}\times\frac{2}{9}\div\frac{1}{15}\)
\(=\frac{1}{5}\times\frac{2}{9}\times15\)
\(=\left(\frac{1}{5}\times15\right)\times\frac{2}{9}\)
\(=3\times\frac{2}{9}\)
\(=\frac{2}{3}\)
b\(\frac{4}{15}\times\frac{7}{15}\times\frac{5}{4}\)
\(=\left(\frac{4}{15}\times\frac{5}{4}\right)\times\frac{7}{15}\)
\(=\frac{1}{3}\times\frac{7}{15}\)
\(=\frac{7}{45}\)
c,\(\frac{21}{23}\times\frac{5}{11}\times\frac{44}{?}\)
d,\(26\times\frac{13}{42}\div13\)
\(=\left(26\div13\right)\times\frac{13}{42}\)
\(=2\times\frac{13}{42}\)
\(=\frac{13}{21}\)
\(a,1\dfrac{4}{7}.3\dfrac{4}{11}.3\dfrac{11}{15}.5\dfrac{5}{8}\)
\(=\dfrac{11}{7}.\dfrac{27}{11}.\dfrac{56}{15}.\dfrac{45}{8}\)
\(=\dfrac{11.27.56.45}{7.11.15.8}\)
\(=\dfrac{1.3.7.3}{1.1.1.1}\)
\(=63\)
\(b,\dfrac{3}{4}.1\dfrac{1}{2}+\dfrac{3}{4}.\dfrac{1}{2}\)
\(=\dfrac{3}{4}.\left(1\dfrac{1}{2}+\dfrac{1}{2}\right)\)
\(=\dfrac{3}{4}.2\)
\(=\dfrac{3}{2}\)
Ta có:
M = \(\frac{1}{1-x}\cdot\frac{1}{1+x}\cdot\frac{1}{1+x^2}\cdot\frac{1}{1+x^4}\cdot\frac{1}{1+x^8}\cdot\frac{1}{1+x^{16}}\)
M = \(\frac{1}{\left(1-x\right)\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^2\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^4\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^8\right)\left(1+x^8\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
M = \(\frac{1}{1-x^{32}}\)
\(\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{900}-1\right)\)
\(=\left(\frac{1}{2}-1\right)\left(\frac{1}{2}+1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}-1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{30}-1\right)\left(\frac{1}{30}+1\right)\)
\(=\frac{-1}{2}.\frac{3}{2}.\frac{-2}{3}.\frac{4}{3}.\frac{-3}{4}.\frac{5}{4}...\frac{-29}{30}.\frac{31}{30}=-\frac{31}{60}\)
(14−1)(19−1)(116−1)...(1900−1)(14−1)(19−1)(116−1)...(1900−1)
=(12−1)(12+1)(13−1)(13+1)(14−1)(14+1)...(130−1)(130+1)=(12−1)(12+1)(13−1)(13+1)(14−1)(14+1)...(130−1)(130+1)
=−12.32.−23.43.−34.54...−2930.3130=−3160