K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8

Ta có pt hoành độ giao điểm là: 

\(-x^2=\left(2-m\right)x+m-3\\ \Leftrightarrow x^2+\left(2-m\right)x+m-3=0\)

Để pt có nghiệm phân biệt thì: 

\(\Delta=\left(2-m\right)^2-4\cdot1\cdot\left(m-3\right)\\ =4-4m+m^2-4m+12=m^2-8m+16=\left(m-4\right)^2>0\) 

`=>m-4<>0<=>m<>4` 

Ta có: `a+b+c=1+(2-m)+(m-3)=0`

\(=>x_1=1\)
Theo vi-ét ta có: \(x_1+x_2=m-2=>x_2=m-2-x_2=m-2-1=m-3\) 

\(\left|x_1\right|+x_2^2=2\\ =>1+\left(m-3\right)^2=2\\< =>\left(m-3\right)^2=2-1=1\\ < =>\left[{}\begin{matrix}m-3=1\\m-3=-1\end{matrix}\right.\\ < =>\left[{}\begin{matrix}m=1+3=4\left(ktm\right)\\m=-1+3=2\left(tm\right)\end{matrix}\right.\)

Vậy: ... 

a: Phương trình hoành độ giao điểm là: \(x^2-mx+m-1=0\)

\(\Delta=\left(-m\right)^2-4\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-2<>0

hay m<>2

b: \(\left|x_A-x_B\right|< 3\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< 3\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)

\(\Leftrightarrow m^2-4\left(m-1\right)< 9\)

\(\Leftrightarrow\left(m-2\right)^2-3< 0\)

=>(m+1)(m-5)<0

=>-1<m<5

5 tháng 7 2021

Xét pt hoành độ gđ của (P) và (d) có:

\(x^2=mx+m+3\)

\(\Leftrightarrow x^2-mx-m-3=0\)  (I)

Để (d) cắt (P) tại hai điểm pb ở bên phải trục tung

\(\Leftrightarrow\) Pt (I) có hai nghiệm dương 

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m+12>0\left(lđ\right)\\m>0\\-m-3>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< -3\end{matrix}\right.\)\(\Rightarrow m\in\varnothing\)

Vậy...

5 tháng 7 2021

Xét pt hoành độ gđ của parabol và d có:

\(x^2=x+m-1\)

\(\Leftrightarrow x^2-x+1-m=0\) (1)

Để (P) và (d) cắt nhau tại hai điểm pb bên trái trục tung

\(\Leftrightarrow\) Pt (1) có hai nghiệm âm pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S=1< 0\left(vl\right)\\P=1-m>0\end{matrix}\right.\)\(\Rightarrow\) Không tồn tại m để (d) cắt (P) tại hai điểm pb ở bên trái trục tung

Vậy...

Phương trình hoành độ giao điểm là:

\(x^2-x-m+1=0\)

a=1; b=-1; c=-m+1

\(\Delta=b^2-4ac\)

\(=\left(-1\right)^2-4\left(-m+1\right)\)

\(=1+4m-4\)

=4m-3

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow m>\dfrac{3}{4}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-1\right)}{1}=1\\x_1x_2=\dfrac{c}{a}=\dfrac{-m+1}{1}=-m+1\end{matrix}\right.\)

Để (d) cắt (P) tại hai điểm phân biệt nằm ở bên trái trục tung thì 

\(\left\{{}\begin{matrix}m>\dfrac{3}{4}\\x_1+x_2< 0\left(loại\right)\\x_1x_2>0\end{matrix}\right.\)

Vậy: \(m\in\varnothing\)

NV
7 tháng 7 2021

Pt hoành độ giao điểm:

\(x^2=mx-m+1\Leftrightarrow x^2-mx+m-1=0\) (1)

d cắt (P) tại 2 điểm pb nằm ở 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm pb trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow1.\left(m-1\right)< 0\)

\(\Leftrightarrow m< 1\)

22 tháng 7 2019

Đáp án D

Xét phương trình hoành độ giao điểm

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Nên đường thẳng cắt parabol tại hai điểm phân biệt với

a: PTHĐGĐ là:

x^2-2x-|m|-1=0

a*c=-|m|-1<0

=>(d)luôn cắt (P) tại hai điểm phân biệt

b: Bạn bổ sung lại đề đi bạn

8 tháng 12 2018

Đáp án D

1: Tọa độ A là:

y=0 và 4x+m-3=0

=>x=(-m+3)/4 và y=0

=>OA=|m-3|/4

Tọa độ B là:

x=0 và y=m-3

=>OB=|m-3|

Theo đề, ta có: 1/2*(m-3)^2/4=9

=>(m-3)^2/4=18

=>(m-3)^2=72

=>\(m=\pm6\sqrt{2}+3\)

2:

PTHĐGĐ là:

x^2-4x-m+3=0

Δ=(-4)^2-4*(-m+3)=16+4m-12=4m+4

Để (P) cắt (d) tại hai điểm phân biệt thì 4m+4>0

=>m>-1

(4-x1)(x2-1)=2

=>4x2-4-x1x2+1=2

=>x2(x1+x2)-3-(-m+3)=2

=>x2*4-3+m-3=2

=>x2*4=2-m+6=8-m

=>x2=2-1/2m

=>x1=4-2+1/2m=1/2m+2

x1*x2=-m+3

=>-m+3=(1/2m+2)(2-1/2m)=4-1/4m^2

=>-m+3-4+1/4m^2=0

=>1/4m^2-m-1=0

=>m^2-4m-4=0

=>\(m=2\pm2\sqrt{2}\)