K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8

`(x-5)^2024=(2024^2025*2025^2024)^0`

`=>(x-5)^2024=1`

`=>(x-5)^2024=1^2024`

`TH1:x-5=1`

`=>x=5+1`

`=>x=6`

`TH2:x-5=-1`

`=>x=-1+5`

`=>x=4` 

6 tháng 1 2022

\(\dfrac{x+1}{2020}+\dfrac{x-1}{2018}=\dfrac{x+5}{2024}+\dfrac{x-5}{2014}\)

\(\Leftrightarrow\left(\dfrac{x+1}{2020}-1\right)+\left(\dfrac{x-1}{2018}-1\right)-\left(\dfrac{x+5}{2024}-1\right)-\left(\dfrac{x-5}{2014}-1\right)=0\)

\(\Leftrightarrow\dfrac{x-2019}{2020}+\dfrac{x-2019}{2018}-\dfrac{x-2019}{2024}-\dfrac{x-2019}{2014}=0\)

\(\Leftrightarrow\left(x-2019\right)\left(\dfrac{1}{2020}+\dfrac{1}{2018}-\dfrac{1}{2024}-\dfrac{1}{2014}\right)=0\)

\(\Leftrightarrow x-2019=0\\ \Leftrightarrow x=2019\)

29 tháng 4 2023

Với x = 2023 

<=> x + 1 = 2024

Khi đó P(2023) = x2023 - (x + 1).x2022 + ... + (x + 1).x - 1

= x2023 - x2023 - x2022 + .. + x2 + x - 1

= x - 1 = 2023 - 1 = 2022

10 tháng 9 2023

\(S=C^0_{2024}+\dfrac{1}{2}C^2_{2024}+\dfrac{1}{3}C^4_{2024}+\dfrac{1}{4}C^6_{2024}+...+\dfrac{1}{1013}C^{2024}_{2024}\)

Ta có :

\(\dfrac{1}{k+1}C^{2k-1}_n=\dfrac{1}{k+1}.\dfrac{n!}{\left(2k-1\right)!\left(n-2k+1\right)!}\)

\(=\dfrac{1}{n+1}.\dfrac{\left(n+1\right)!}{2k!\left[\left(n+1\right)-2k\right]!}\)

\(=\dfrac{1}{n+1}C^{2k}_{n+1}\)

\(\Rightarrow S_n=\dfrac{1}{n+1}\Sigma^{2k}_{k=0}C^{2k}_{n+1}=\dfrac{1}{n+1}\left(\Sigma^{2k}_{k=0}C^{2k-1}_{n+1}-C^0_{n+1}\right)=\dfrac{2^{2n-1}-1}{n+1}\)

\(\Rightarrow S=\dfrac{2^{2025}-1}{1013}\)

10 tháng 9 2023

S = C₀₂₀₂₄ + 12.C₂₀₂₄ + 13.C₂₀₂₄ + 14.C₂₀₂₄ + ... + 11013.C₂₀₂₄

= (C₀₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + (C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + ... + (C₂₀₂₄)

= 11014.C₂₀₂₄

= 11014.

16 tháng 8

jhvugb