a+13/a+11 và a+2023/a+2021
so sánh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)
\(\dfrac{154}{155}>\dfrac{154}{155+156}\)
\(\dfrac{155}{156}>\dfrac{155}{155+156}\)
=>154/155+155/156>(154+155)/(155+156)
=>A>B
b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)
2021/2022>2021/6069
2022/2023>2022/2069
2023/2024>2023/6069
=>D>C
\(a)\dfrac{7}{8}=\dfrac{7\times9}{8\times9}=\dfrac{63}{72}\)
\(\dfrac{3}{9}=\dfrac{3\times8}{9\times8}=\dfrac{24}{72}\)
Do : \(\dfrac{63}{72}>\dfrac{24}{72}\) nên \(\dfrac{7}{8}>\dfrac{3}{9}\)
Không thì bạn có thể rút gọn 3/9 đi làm cho nó gọn ạ.
\(b)\) Ta thấy : \(\dfrac{2023}{2021}>1\) ( vì tử lớn hơn mẫu )
\(\dfrac{2021}{2022}< 1\) ( vì tử bé hơn mẫu )
Do đó : \(\dfrac{2023}{2021}>\dfrac{2021}{2022}\)
\(c)\dfrac{5}{6}=\dfrac{5\times7}{6\times7}=\dfrac{35}{42}\)
\(\dfrac{6}{7}=\dfrac{6\times6}{7\times6}=\dfrac{36}{42}\)
Do : \(\dfrac{36}{42}>\dfrac{35}{42}\) nên \(\dfrac{6}{7}>\dfrac{5}{6}\)
Ta có
A = 2017/2019 =1 - 2/2019
B = 2021/2023 = 1 - 2/2013
MÀ 2/2019 < 2/2013 => 1 - 2/2019 > 1 - 2/2013 hay A > B
Vậy A > B
Easy mà bạn :
Ta có :
\(A=\frac{2017}{2019}=1-\frac{2}{2019}\)
\(B=\frac{2021}{2023}=1-\frac{2}{2023}\)
Do \(\frac{2}{2019}>\frac{2}{2023}\)
\(\Rightarrow1-\frac{2}{2019}< 1-\frac{2}{2023}\)
\(\Rightarrow A< B\)
~
a: \(\dfrac{4}{9}=\dfrac{4\cdot2}{9\cdot2}=\dfrac{8}{18}< \dfrac{13}{18}\)
b: 34/-4=-8,5
Ta có: 8,5<8,6
=>-8,5>-8,6
=>\(\dfrac{34}{-4}>-8,6\)
c: \(\dfrac{2021}{2022}=1-\dfrac{1}{2022}\)
\(\dfrac{2022}{2023}=1-\dfrac{1}{2023}\)
Ta có: 2022<2023
=>\(\dfrac{1}{2022}>\dfrac{1}{2023}\)
=>\(-\dfrac{1}{2022}< -\dfrac{1}{2023}\)
=>\(-\dfrac{1}{2022}+1< -\dfrac{1}{2023}+1\)
=>\(\dfrac{2021}{2022}< \dfrac{2022}{2023}\)
Ta có:
\(A=1+2+2^2+2^3+...+2^{2021}+2^{2022}\)
\(\Rightarrow2A=2\left(1+2+2^2+...+2^{2022}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{2023}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2023}\right)-\left(1+2+2^2+...+2^{2022}\right)\)
\(\Rightarrow A=2^{2023}-1\)
Ta thấy: \(2^{2023}-1=2^{2023}-1\)
Vậy: \(A=B\)
\(\dfrac{1}{10}A=\dfrac{10^{2023}+5}{10^{2023}+50}=1-\dfrac{45}{10^{2023}+50}\)
\(\dfrac{1}{10}B=\dfrac{10^{2022}+5}{10^{2022}+50}=1-\dfrac{45}{10^{2022}+50}\)
10^2023+50>10^2022+50
=>-45/10^2023+50<-45/10^2020+50
=>1/10A<1/10B
=>A<B
2021/2023=1-2/2023
101/103=1-2/103
mà 2/2023<2/103
nên 2021/2023>101/103
\(\dfrac{a+13}{a+11}=\dfrac{a+11+2}{a+11}=1+\dfrac{2}{a+11}\)
\(\dfrac{a+2023}{a+2021}=\dfrac{a+2021+2}{a+2021}=1+\dfrac{2}{a+2021}\)
Vì: \(\dfrac{2}{a+11}>\dfrac{2}{a+2021}\) nên \(\dfrac{a+13}{a+11}>\dfrac{a+2023}{a+2021}\)