a+13/a+11 và a+2023/a+2021
so sánh bằng cách thuận tiện
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 9/11=1-2/11
11/13=1-2/13
mà -2/11<-2/13
nên 9/11<11/13
b: 19/15=1+4/15
15/11=1+4/11
mà 4/15<4/11
nên 19/15<15/11
a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)
\(\dfrac{154}{155}>\dfrac{154}{155+156}\)
\(\dfrac{155}{156}>\dfrac{155}{155+156}\)
=>154/155+155/156>(154+155)/(155+156)
=>A>B
b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)
2021/2022>2021/6069
2022/2023>2022/2069
2023/2024>2023/6069
=>D>C
2021 x 2021 - 2019 x 2023
= (2019 +2) x ( 2023 -2) - 2019 x 2023
= 2019 x 2023 - 2 x 2019 + 2 x 2023 - 4 - 2019 x 2023
= ( 2019 x 2023 - 2019 x 2023) + 2 x ( 2023 - 2019) - 4
= 0 + 2 x 4 - 4
= 8 - 4
= 4
2021 x 2021 - 2019 x 2023
= (2019 +2) x ( 2023 -2) - 2019 x 2023
= 2019 x 2023 - 2 x 2019 + 2 x 2023 - 4 - 2019 x 2023
= ( 2019 x 2023 - 2019 x 2023) + 2 x ( 2023 - 2019) - 4
= 0 + 2 x 4 - 4
= 8 - 4
= 4
\(a)\dfrac{7}{8}=\dfrac{7\times9}{8\times9}=\dfrac{63}{72}\)
\(\dfrac{3}{9}=\dfrac{3\times8}{9\times8}=\dfrac{24}{72}\)
Do : \(\dfrac{63}{72}>\dfrac{24}{72}\) nên \(\dfrac{7}{8}>\dfrac{3}{9}\)
Không thì bạn có thể rút gọn 3/9 đi làm cho nó gọn ạ.
\(b)\) Ta thấy : \(\dfrac{2023}{2021}>1\) ( vì tử lớn hơn mẫu )
\(\dfrac{2021}{2022}< 1\) ( vì tử bé hơn mẫu )
Do đó : \(\dfrac{2023}{2021}>\dfrac{2021}{2022}\)
\(c)\dfrac{5}{6}=\dfrac{5\times7}{6\times7}=\dfrac{35}{42}\)
\(\dfrac{6}{7}=\dfrac{6\times6}{7\times6}=\dfrac{36}{42}\)
Do : \(\dfrac{36}{42}>\dfrac{35}{42}\) nên \(\dfrac{6}{7}>\dfrac{5}{6}\)
Ta có:
`(a+13)/(a+11)=((a+11)+2)/(a+11)`
`=1+2/(a+11)`
`(a+2023)/(a+2021)=((a+2021)+2)/(a+2021)`
`=1+2/(a+2021)`
Vì: `a+2021>a+11`
`=>2/(a+2021)<2/(a+11)`
`=>1+2/(a+2021)<1+2/(a+11)`
`=>(a+2023)/(a+2021)<(a+13)/(a+11)`
Dạng này anh trả lời qua olm, chứ giải ở hoc24 lỗi ạ