OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Mini game 20/11 tri ân thầy cô, nhận thưởng hấp dẫn - Tham gia ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC với G là trọng tâm .Lấy P trên BC các đường thẳng cắt BG,GFtai I,K.CMR:
a. EI=IK=KF
b. PG đi qua trung điểm EF
Cho tam giác ABC trọng tâm G. Một điểm bất kì thuộc canh BC. Qua P kẻ các đường thẳng song song với CG, BG cắt AB và AC ở E và F, EF cắt BG, CG ở I và K. Chứng minh:
a) EI = IK = KF
b) PG đi qua trung điểm của EF
Cho tam giác ABC có G là trọng tâm, lấyP trên BC các đường thẳng đi qua P và song song với CG;BG cắt AB;AC ở E;F đường thẳng EF cắt BG;CG lần lượt tại I và K. CMR
a) EI=IK=KF
b) PQ đi qua trung điểm của EF
Cho tam giác ABC trọng tâm G. Một điểm bất kì thuộc canh BC. Qua P kẻ các dg thẳng // với CG, BG cắt AB và AC ở E và F, EF cắt BG, CG ở I và K. C/m EI = IK = KF và PG đi qua trung điểm của IK và MN (M là giao của EP với BG, N là giao của PF với CG)
tam giac ABC , G là Trọng tâm . P thuộc BC . Đường thẳng đi qua P // GB,GC và cắt AC, B tai F,E . E,F cắt BG và CG tại I và J . C/M EI=IJ =IF và PG đi qua trung điểm của EF
cho tam giác ABC có trọng tâm G. 1 điểm K thuộc BC. Các đường thẳng đi qua K theo thứ tự song song với CG và BG cắt AC lần Lượt tại E;F. Gọi giao của EF với BG và CG là I;J. Chứng minh EI=IJ=JF.
b.Chứng minh KG đi qua trung điểm BF.
Giúp với nhé.1. Cho tứ giác ABCD. Trên cạnh AB lấy E, F sao cho AE=EF=FB. Trên cạnh CD lấy G,H sao cho DG=GH=HC. Gọi M, I, K, N lần lượt là trung điểm của AD, EG, FH, BC. CMR: 4 điểm M, I, K, N thẳng hàng và MI=IK=KN.2. Cho tam giác ABC đều. Đường thẳng song song với BC cắt AB, AC ở D,E . Gọi G là trọng tâm của tam giác ADE, I là trung điểm của CD. Tính số đo các góc của tam giác GIB.
BT10: Cho hình thang ABCD (AB//CD). M là trung điểm của CD. Gọi I là giao điểm của các đường phân giác, G là trọng tâm của tam giác. a, Chứng minh IK//AB. b, Đường thẳng IK cắt AD, BC theo thứ tự E và P. Chứng minh: EI=IK=KF.