K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)

=>\(\widehat{BAC}+60^0+30^0=180^0\)

=>\(\widehat{BAC}=90^0\)

AD là phân giác của góc BAC

=>\(\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{BAC}}{2}=45^0\)

Ta có: \(\widehat{BAH}+\widehat{B}=90^0\)(ΔBHA vuông tại H)

=>\(\widehat{BAH}=90^0-60^0=30^0\)

Vì \(\widehat{BAH}< \widehat{BAD}\)

nên tia AH nằm giữa hai tia AB và AD

=>\(\widehat{BAH}+\widehat{HAD}=\widehat{BAD}\)

=>\(\widehat{HAD}=45^0-30^0=15^0\)

ΔAHD vuông tại H
=>\(\widehat{HAD}+\widehat{HDA}=90^0\)

=>\(\widehat{HDA}=90^0-15^0=75^0\)

 

30 tháng 4 2022

a. -△AEC và △ADB có: \(\widehat{AEC}=\widehat{ADB}=90^0;\widehat{BAC}\) là góc chung.

\(\Rightarrow\)△AEC∼△ADB (g-g).

\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\Rightarrow AE.AB=AD.AC\).

\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AD}{AB}\)

b. -△ADE và △ABC có: \(\dfrac{AE}{AC}=\dfrac{AD}{AB};\widehat{BAC}\) là góc chung.

\(\Rightarrow\)△ADE∼△ABC (g-g).

c. -△AEC vuông tại E có: \(\widehat{EAC}=60^0\Rightarrow AE=\dfrac{AC}{2}\)

-△ADE∼△ABC \(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AE}{AC}\right)^2=\dfrac{1}{4}\)

\(\Rightarrow S_{ADE}=\dfrac{1}{4}S_{ABC}=\dfrac{1}{4}.120=30\left(cm^2\right)\)

30 tháng 4 2022

C/m \(AE=\dfrac{AC}{2}\):

-Lấy M là trung điểm BC.

-△AEC vuông tại E có: EM là trung tuyến.

 \(\Rightarrow AM=EM=\dfrac{1}{2}AC\)

\(\Rightarrow\)△AEM cân tại M mà \(\widehat{EAM}=60^0\).

\(\Rightarrow\)△AEM đều \(\Rightarrow AE=AM=\dfrac{AC}{2}\)

24 tháng 4 2017

Khó king khủng em mới học lớp 4 thôi để em ăn cháo sen bát bảo minh trung làm được ngay nhưng phải làm thêm tí bò húc với lại rượu đế ! la la la la la ta là một con người

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE

=>AD/AE=AB/AC

=>AD/AB=AE/AC

Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

c: góc A=90-30=60 độ

ΔADE đồng dạng với ΔABC

=>S ADE/S ABC=(AD/AB)^2=1/4

=>S ABC=120cm2

4 tháng 5 2015

1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng

=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600

=> tg AMI đều => AM = AI = 1/2AN

Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)

Từ (1) và (2) bn suy ra nhé

26 tháng 4 2019

1b) Tam giác AMN vuông tại M có góc A = 60o

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng

=> SAMD/SNMA  = (AM/MN)2 = AM2 /MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o

=> tg AMI đều => AM = AI = 1/2AN

Từ (1) và (2) bn suy ra nhé

30 tháng 7 2020

30 o N B C M A 10

a. Trong tam giác vuông ABC, ta có :

\(AB=BC.\sin\widehat{C}=10.\sin30^o=10.\frac{1}{2}=5\left(cm\right)\)

\(AC=BC.\cos\widehat{C}=10.\cos30^o=10.\frac{\sqrt{3}}{2}=5\sqrt{3}\left(cm\right)\)

b)

Ta có : \(BM\perp BN\)( tính chất 2 góc kề bù ) \(\Rightarrow\widehat{MBN}=90^o\left(1\right)\)

         \(AM\perp BM\left(gt\right)\Rightarrow\widehat{AMB}=90^o\left(2\right)\)

         \(AN\perp BN\left(gt\right)\Rightarrow\widehat{ANB}=90^o\left(3\right)\)

Từ (1) (2) và (3) , suy ra : tứ giác AMBN là hình chữ nhật

\(\Rightarrow\Delta AMB=\Delta NBM\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABM}=\widehat{NMB}\)

Mà \(\widehat{ABM}=\widehat{MBC}\left(gt\right)\)

\(\Rightarrow\widehat{NMB}=\widehat{NBC}\)

Suy ra: MN // BC (có cặp góc so le trong bằng nhau)

Vì AMBN là hình chữ nhật nên AB = MN

30 tháng 7 2020

)): gửi cả câu c) rồi mà cuối cùng lại 0 có , làm lại câu c) sang bên này :>

c) 

Tam giác ABC vuông tại A nên \(\widehat{B}+\widehat{C}=90^o\)

\(\Rightarrow\widehat{B}=90^o-\widehat{C}=90^o-30^o=60^o\)

\(\Rightarrow\widehat{ABM}=\frac{1}{2}\widehat{B}=\frac{1}{2}.60^o=30^o\)

Xét 2 tam giác ABC và MAB ,, ta có :

\(\widehat{BAC}=\widehat{AMB}=90^o\)

\(\widehat{ACB}=\widehat{ABM}=90^o\)

\(\Rightarrow\Delta ABC~\Delta MAB\left(g.g\right)\)

=> Tỉ số đồng dạnh \(k=\frac{AB}{BC}=\frac{5}{10}=\frac{1}{2}\)

a: Xét ΔOKB vuông tại K và ΔOHC vuông tại H co

góc KOB=góc HOC

=>ΔOKB đồng dạng với ΔOHC

d: góc BKC=góc BHC=90 độ

=>BKHC nộitiếp

=>góc AKH=góc ACB

=>ΔAKH đồng dạng với ΔACB

=>\(\dfrac{S_{AKH}}{S_{ACB}}=\left(\dfrac{AK}{AC}\right)^2=\dfrac{1}{4}\)

=>\(S_{ABC}=32\left(cm^2\right)\)

20 tháng 4 2022

a) Xét tam giác ADB vuông tại D

           tam giác AEC vuông tại E

    có A góc chung

=>tam giác ADB đồng dạng tam giác AEC (g-g)

\(\widehat{C'}=35^0\)