phân tích thành nhân tử (x+y)^2-2(x+y)z+4z^2 gấpppppooo ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x + y + z )2 + ( x + y - z )2 - 4z2
= [ ( x + y ) + z ]2 + [ ( x + y ) - z ]2 - 4z2 (1)
Đặt \(\hept{\begin{cases}x+y=a\\z=b\end{cases}}\)
(1) <=> ( a + b )2 + ( a - b )2 - 4b2
= a2 + 2ab + b2 + a2 - 2ab + b2 - 4b2
= 2a2 - 2b2
= 2( a2 - b2 )
= 2( a - b )( a + b )
= 2( x + y - z )( x + y + z )
\(A=4y^2-\left(x^2-10x+25\right)\)
\(A=4y^2-\left(x-5\right)^2\)
\(A=\left(2y-x-5\right)\left(2y+x-5\right)\)
\(B=\left(x-4\right)^4-\left(x+a\right)^4\)
\(B=\left(\left(x-4\right)^2\right)^2-\left(\left(x+a\right)^2\right)^2\)
\(B=\left(\left(x-4\right)^2-\left(x+a\right)^2\right)\left(\left(x-4\right)^2+\left(x+a\right)^2\right)\)
\(B=\left(x-4\right)\left(x+a\right)\left(\left(x-4\right)^2+\left(x+a\right)^2\right)\)
\(C=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)
\(C=\left(x^2+x\right)\left(x^2+x+2\right)+1\)
Lời giải:
$x^4y^4-z^4=(x^2y^2)^2-(z^2)^2=(x^2y^2-z^2)(x^2y^2+z^2)$
$=(xy-z)(xy+z)(x^2y^2+z^2)$
$(x+y+z)^2-4z^2=(x+y+z)^2-(2z)^2=(x+y+z-2z)(x+y+z+2z)$
$=(x+y-z)(x+y+3z)$
$\frac{-1}{9}x^2+\frac{1}{3}xy-\frac{1}{4}y^2=\frac{-4x^2+12xy-9y^2}{36}$
$=-\frac{4x^2-12xy+9y^2}{36}=-\frac{(2x-3y)^2}{36}=-\left(\frac{2x-3y}{6}\right)^2$
Có : x^2+y^2+z^2+4x-2y-4z+10
= (x^2+4x+4)+(y^2-2y+1)+(z^2-4x+4)+1
= (x+2)^2+(y-1)^2+(z-2)^2+1 >= 1
=> (x+2)^2+(y-1)^2+(z-2)^2 luôn dương với mọi x,y,z
\(x^2+y^2+z^2+4x-2y-4z+10\)
\(=\left(x^2+4x+4\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)+1\)
\(=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1\)
Vì \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\)\(\Leftrightarrow\)\(\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2\ge0\)
\(\Rightarrow\)\(\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1>0\)
\(\Rightarrow\)\(đpcm\)
\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)
\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)
Tương tự và cộng lại:
\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)
\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)
\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)
\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)
\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)
\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)
\(=\sqrt{189}\)
Dấu "=" xảy ra <=> x = y = z = 4
x2 + 2y2 + z2 - 2xy - 2y - 4z + 5 = 0
<=> ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + ( z2 - 4z + 4 ) = 0
<=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2 = 0
Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\forall x;y;z\)=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2\(\ge\)0\(\forall\)x ; y ; z
Dấu "=" xảy ra <=>\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)( 1 )
Thay ( 1 ) vào A , ta được :
\(A=\left(1-1\right)^{2020}+\left(1-2\right)^{2020}+\left(2-3\right)^{2020}=0+1+1=2\)
Vậy A = 2
Ta có: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)
Mà \(VT\ge0\left(\forall x,y,z\right)\) nên dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)
Ta có: \(x^2-2xy-4z^2+y^2\)
\(=\left(x^2-2xy+y^2\right)-4z^2\)
\(=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)\)
\(=\left[6-\left(-4\right)-2\cdot45\right]\left[6-\left(-4\right)+2\cdot45\right]=-80\cdot100=-8000\)
A = (\(x+y\))2 - 2.(\(x+y\))z + 4z2
A = (\(x+y\))2 - 2.(\(x+y\))z + (2z)2
A = (\(x+y\) - 2z)2
A = (\(x+y\) - 2z)(\(x+y\) - 2z)