K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8

A = (\(x+y\))2 - 2.(\(x+y\))z + 4z2

A = (\(x+y\))2 - 2.(\(x+y\))z + (2z)2

A = (\(x+y\) - 2z)2

A = (\(x+y\) - 2z)(\(x+y\) - 2z)

23 tháng 9 2020

( x + y + z )2 + ( x + y - z )2 - 4z2

= [ ( x + y ) + z ]2 + [ ( x + y ) - z ]2 - 4z2 (1)

Đặt \(\hept{\begin{cases}x+y=a\\z=b\end{cases}}\)

(1) <=> ( a + b )2 + ( a - b )2 - 4b2

       = a2 + 2ab + b2 + a2 - 2ab + b2 - 4b2

       = 2a2 - 2b2

       = 2( a2 - b2 )

       = 2( a - b )( a + b )

       = 2( x + y - z )( x + y + z )

10 tháng 9 2017

\(A=4y^2-\left(x^2-10x+25\right)\)

\(A=4y^2-\left(x-5\right)^2\)

\(A=\left(2y-x-5\right)\left(2y+x-5\right)\)

\(B=\left(x-4\right)^4-\left(x+a\right)^4\)

\(B=\left(\left(x-4\right)^2\right)^2-\left(\left(x+a\right)^2\right)^2\)

\(B=\left(\left(x-4\right)^2-\left(x+a\right)^2\right)\left(\left(x-4\right)^2+\left(x+a\right)^2\right)\)

\(B=\left(x-4\right)\left(x+a\right)\left(\left(x-4\right)^2+\left(x+a\right)^2\right)\)

\(C=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)

\(C=\left(x^2+x\right)\left(x^2+x+2\right)+1\)

10 tháng 9 2017

\(A=\left(x^2-2xy+y^2\right)-4z^2\)

\(A=\left(x-y\right)^2-4z^2\)

\(A=\left(x-y-2z\right)\left(x-y+2z\right)\)

Thay x,y,z vào , ta dc;

\(A=\left(6-2-2.25\right)\left(6-2+2.25\right)\)

\(A=-2484\)( k bik bấm máy tính đúng k? bn kiểm tra lại nhé!)

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:
$x^4y^4-z^4=(x^2y^2)^2-(z^2)^2=(x^2y^2-z^2)(x^2y^2+z^2)$

$=(xy-z)(xy+z)(x^2y^2+z^2)$

$(x+y+z)^2-4z^2=(x+y+z)^2-(2z)^2=(x+y+z-2z)(x+y+z+2z)$
$=(x+y-z)(x+y+3z)$

$\frac{-1}{9}x^2+\frac{1}{3}xy-\frac{1}{4}y^2=\frac{-4x^2+12xy-9y^2}{36}$

$=-\frac{4x^2-12xy+9y^2}{36}=-\frac{(2x-3y)^2}{36}=-\left(\frac{2x-3y}{6}\right)^2$

12 tháng 7 2021

Câu trả lời của cô quá đúng luôn đấy

15 tháng 1 2018

Có : x^2+y^2+z^2+4x-2y-4z+10

= (x^2+4x+4)+(y^2-2y+1)+(z^2-4x+4)+1

= (x+2)^2+(y-1)^2+(z-2)^2+1 >= 1

=> (x+2)^2+(y-1)^2+(z-2)^2 luôn dương với mọi x,y,z

15 tháng 1 2018

\(x^2+y^2+z^2+4x-2y-4z+10\)

\(=\left(x^2+4x+4\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)+1\)

\(=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1\)

Vì  \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\)\(\Leftrightarrow\)\(\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2\ge0\)

\(\Rightarrow\)\(\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1>0\) 

\(\Rightarrow\)\(đpcm\)

NV
30 tháng 12 2021

\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)

\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)

Tương tự và cộng lại:

\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)

\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)

30 tháng 12 2021

\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)

\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)

\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)

\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)

\(=\sqrt{189}\)

Dấu "=" xảy ra <=> x = y = z = 4

8 tháng 10 2020

x2 + 2y2 + z2 - 2xy - 2y - 4z + 5 = 0

<=> ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + ( z2 - 4z + 4 ) = 0

<=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2 = 0

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\forall x;y;z\)=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2\(\ge\)0\(\forall\)x ; y ; z

Dấu "=" xảy ra <=>\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)( 1 )

Thay ( 1 ) vào A , ta được :

\(A=\left(1-1\right)^{2020}+\left(1-2\right)^{2020}+\left(2-3\right)^{2020}=0+1+1=2\)

Vậy A = 2

8 tháng 10 2020

Ta có: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)

Mà \(VT\ge0\left(\forall x,y,z\right)\) nên dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)

26 tháng 6 2021

Ta có: \(x^2-2xy-4z^2+y^2\)

\(=\left(x^2-2xy+y^2\right)-4z^2\)

\(=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)\)

\(=\left[6-\left(-4\right)-2\cdot45\right]\left[6-\left(-4\right)+2\cdot45\right]=-80\cdot100=-8000\)

26 tháng 6 2021

x2 - 2xy + y2 - 4z2

= (x - y)2 - (2z)2

= (x - y - 2z) (x - y + 2z)

Thay x = 6 ; y = -4 và z = 45 vào biểu thức ta được:

[6 - (-4) - 2 . 45] [6 - (-4) + 2 . 45]

= -80 . 100

= -8000